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Abstract

We consider finite games in strategic form with Choquet expected utility. We
characterize a preference-based notion of belief, define Choquet rationalizability,
and characterize it by Choquet rationality and common beliefs in Choquet ratio-
nality in the universal capacity type space in a purely measurable setting. We also
show that Choquet rationalizability is equivalent to iterative elimination of strictly
dominated actions (not in the original game but) in an extended game. This allows
for computation of Choquet rationalizable actions without the need to first com-
pute Choquet integrals. Choquet expected utility enables us to investigate common
belief in ambiguity love/aversion. We show that Choquet rationality and common
belief in Choquet rationality and ambiguity love/aversion leads to smaller/larger
sets of action profiles, respectively.
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1 Introduction

Choquet expected utility theory was probably the first approach to decision making
under ambiguity (Schmeidler, 1986, 1989). It has been applied to a variety settings
including portfolio choice (Dow and Werlang, 1992), auctions (Salo and Weber, 1995),
arbitrage pricing (Kelsey and Milne, 1995), incomplete contracts (Mukerji, 1998), risk
sharing (Chateauneuf, Dana, Tallon, 2000), insurance contract (Jeleva, 2000), incomplete
markets (Mukerji and Tallon, 2001), public goods (Eichberger and Kelsey, 2002), search
(Nishimura and Ozaki, 2004), wages (Mukerji and Tallon, 2004), peace-making (Eich-
berger, Kelsey, Schipper, 2009), Cournot and Bertrand oligopoly (Eichberger, Kelsey,
Schipper, 2009), trade (Kajii and Ui, 2006, Dominiak, Eichberger, Lefort, 2012), agree-
ment theorems (Dominiak and Lefort, 2013, 2015) etc. Compared to some other ap-
proaches, it is flexible enough to allow for modelling of both ambiguity aversion and
ambiguity love. Moreover, since it does not feature probability measures, it forces us to
conceptually reconsider standard notions of game theory that were historically developed
with probability measures in mind.

Applying Choquet expected utility to games is not new. Dow and Werlang (1994),
Eichberger and Kelsey (2000, 2014), Marinacci (2000), Haller (2000), Eichberger, Kelsey,
Schipper (2009), Dominiak and Eichberger (2019) apply Choquet expected utility of
Schmeidler (1989) to games.1 While these papers extend formal definitions of Nash
equilibrium to games with Choquet expected utility, it is less clear that also the inter-
pretations of Nash equilibrium extend to games under ambiguity. For instance, how to
interpret independence of conjectures over opponents’ play? And how can mutual belief
(under ambiguity) of conjectures be learned when learning under ambiguity is itself a
conceptually difficult problem. Our approach is to focus on extending rationalizability
à la Spohn (1982), Bernheim (1984) and Pearce (1984) to games with ambiguity and
characterize it by common belief in Choquet rationality. That is, we avoid the issue
of independence of conjectures by allowing for “correlated” conjectures (in particular,
whether or not players are correlated may be a source of ambiguity in games). Moreover,
we assume mutual belief in Choquet rationality rather than mutual belief in play.

Applying rationalizability notions to games with preferences that allow for ambiguity
is also not new. In a truly seminal paper, Epstein (1997) introduced a general utility
representation-based notion of rationalizability, that applies to various decision theories
including essentially2 Choquet expected utility. Although this important paper has been
around since at least 1997, we could not find any application of it. Perhaps one reason
is that a rationalizability notion featuring the utility representation may be of limited
accessibility to applied game theorist familiar with rationalizability à la Bernheim (1984)

1Klibanoff (1996), Lo (1996, 1999), Aryal and Stauber (2014), Riedel and Sass (2014) apply the
maxmin expected utility of Gilboa and Schmeidler (1989). Battigalli et al. (2016), Hanany et al. (2019)
use the smooth-model (Klibanoff, Marinacci, and Mukerji (2005).

2We are not aware that the version of Choquet expected utility applied by Epstein (1997) had been
already developed in 1997.
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and Pearce (1984) and with iterated elimination of strictly dominated actions. That’s
why we introduce the analogues of rationalizability and iterated elimination of strictly
dominated actions for Choquet expected utility. Altogether we define six “versions” of
Choquet rationalizability and show their equivalence. This allows applied game theorist
to choose the version they find most easy to work with and at the same time refer to the
interpretations of other versions.

The interpretation of Choquet rationalizability is made transparent with an epistemic
characterization by common belief in Choquet rationality. That is, we introduce a ca-
pacity type space that then allows us to formalize the set of types who are consistent
with k-level belief in Choquet rationality and common belief in Choquet rationality. In
order to characterize Choquet rationality by common belief in Choquet rationality, we
first require a “rich” capacity type space. We apply results by Ganguli, Heifetz, and Lee
(2016) to claim the existence of a Choquet expected utility representation type space.
Next we claim the existence of a universal capacity type space by defining a fully faithful
functor between the category of Choquet expected utility representation type spaces and
the category of capacity type spaces. This is outlined in Section 3.1 and the appendix.

We should clarify upfront that we assume that players do not randomize between
their pure actions. Besides the classical arguments against mixed actions (see the debate
in Osborne and Rubinstein, 1995, Chapter 3.2), there are other arguments for not consid-
ering “mixed extensions” in our context. In choice situations under ambiguity, there are
different views on how a decision maker’s preference for mixtures between actions and her
attitudes towards ambiguity are related. In particular, depending on how randomization
is captured, an ambiguity averse subject may have a (strong) preference for mixtures
between actions or be indifferent to them. Preference for randomization appears in the
Anscombe-Aumann framework to Choquet expected utility (Schmeidler, 1989), where
mixtures are embedded via a consequence space which is a set of (objective) lotteries
over outcomes. In this setup, ambiguity aversion (which is equivalent to convexity of a
capacity) is defined as a preference for mixtures between two actions among which the
decision maker is indifferent (see Schmeidler, 1989). Although this is the prevalent way to
interpret ambiguity aversion in the context of individual decision problems, this view is
problematic for interactive situations. The critical point is the resolution of uncertainty.
In the Anscombe-Aumann setup, uncertainty is resolved in two stages. In the first stage,
an ambiguous state is realized. In the second stage, a lottery is played to determine
the final outcome. In games with mixed actions, however, a lottery (or mixed action) is
defined over player’s own actions. In the first stage, a lottery is resolved to determine
the player’s action to be played. In the second stage, the action profile determines the
final payoff. (Here we take the opponents’ pure action profiles as “states of nature” in
the Anscombe-Aumann setting.) In this setup, it can be shown that indifference between
two actions implies indifference to any mixture thereof. That is, while the timing of the
resolution of uncertainty does not matter under subjective expected utility a la Savage,
it does matter under different versions of Choquet expected utility. Moreover, in the
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version of Choquet expected utility that fits best to games in strategic form (which is not
the Anscombe-Aumann setting), players who are indifferent between two actions would
also be indifferent to mixtures thereof.

We should also remark that players’ (Bernoulli) utility functions (i.e., risk attitudes)
are fixed throughout our analysis. In line with the standard practice in game theory,
we assume that players’ payoffs are measured in “utils.” Hence, actions assign utility
numbers to each action profile of the opponent players via outcome functions. Our main
goal is to inquire into how nonadditive beliefs (i.e., strategic ambiguity) and different
attitudes towards ambiguity may affect the set of rationalizable actions. To disentangle
the effects of ambiguity on rationalizability from those by risk attitudes, we assume that
players’ utilities are known.3 Battigalli et al. (2016) provides an elegant analysis of
how ambiguity aversion and risk aversion4, respectively, affect the set of rationalizable
(justifiable) actions in the family of smooth-ambiguity preferences of Klibanoff, Marinacci
and Mukerji (2005). By deriving and using a generalized version of the duality lemma of
Wald (1949) and Pearce (1984), the authors show that more ambiguity aversion, as well
as more risk aversion, expands the set of rationalizable actions.

The paper is organized as follows: In the next section, we introduced Choquet ex-
pected utility theory. This is followed by Section 3 by definitions of Choquet rationaliz-
ability and proof of their equivalence. Section 4 focuses on the epistemic characterization.
In Section 5.1 we consider restrictions to ambiguity aversion or ambiguity love. Finally,
in Section 6 we explore restrictions to ambiguity attitudes under genuine ambiguity aver-
sion (excluding completely the case subjective expected utility). All proofs and additional
material are collected in an appendix.

2 Decision Theoretic Preliminaries

2.1 Choquet Expected Utility Theory

Let 〈Ω,ΣΩ〉 be a measurable space Ω endowed with a σ-algebra ΣΩ. An element ω ∈ Ω
is called state; an element E ∈ ΣΩ is called event.

Definition 1 (Capacity) A capacity on ΣΩ is a set-function ν : ΣΩ → R that satisfies

3We may imaging that player’s utility functions are elicited in another choice situation under un-
certainty (unknown probabilities) by using standard techniques known in the economic literature. To
maintain consistency with our setup, one may consider elicitation techniques that do not rely on random-
ization device, e.g., the tradoff-method by Wakker and Deneffe (1996) or “subjective mixture” introduced
by Nakamura (1990) and Gul (1990). For instance, Ghirardato and Marinacci (2004) applies the latter
method to derive utility function for the general family of biseparable preferences that includes Choquet
expected utility preferences.

4Recently, Weinstein (2016) showed that the set of rationalizable actions is not invariant to monotone
and nonlinear transformations of players’ utility function under subjective expected utility.
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(i) Normalization: ν(∅) = 0, ν(Ω) = 1, and

(ii) Monotonicity: For all E,F ∈ ΣΩ, E ⊆ F implies ν(E) ≤ ν(F ).

Let X be a set of outcomes, a subset of R. An act is a ΣΩ-measurable map f : Ω→ X
(i.e., f−1(x) ∈ ΣΩ for all x ∈ X). An act is simple if it can take only finitely many values.
Throughout the paper, we assume that any act is simple without extra saying so.. This is
w.l.o.g. since we focus on finite games. We denote a simple act by f = (E1, x1; . . . ;En, xn)
where E1, . . . , En is a finite partition of Ω such that f(ω) = xi for all ω ∈ Ei and
i = 1, . . . , n. We slightly abuse our notation and write f(Ei) instead of “f(ω) = xi for
all ω ∈ Ei”. A constant act yields the same outcome in all states (i.e., f−1(x) = Ω for
all x ∈ X). We denote by F the set of all (simple) ΣΩ-measurable acts. For any event
E ∈ ΣΩ and acts f, g ∈ F , fEg denotes the (composite) act defined by

fEg(ω) =

{
f(ω) if ω ∈ E,
g(ω) otherwise.

We denote by % a preference relation on F ; � and ∼ are the asymmetric and sym-
metric parts of %, respectively.

Let u : X → R be a utility function, ranking constant acts. The Choquet expected
utility of an act f with respect to u and ν is calculated via the Choquet integral (see
Choquet, 1954). More precisely, the Choquet integral of any act f = (E1, x1; . . . ;En, xn)
such that f(E1) % f(E2) % . . . % f(En) is given by∫

Ω

u(f)dν =
n∑
i=1

u(xi)
[
ν
( i⋃
j=1

Ej
)
− ν
( i⋃
j=1

Ej−1

)]
, (1)

with convention that E0 = ∅.
We assume that each % on F has a Choquet expected utility representation. Formally,

Definition 2 (Choquet Expected Utility) A preference % on F admits a Choquet
expected utility representation if there exist a utility function u : X −→ R and a capacity
ν : ΣΩ −→ R such that for all acts f, g ∈ F :

f % g if and only if

∫
Ω

u(f)dν ≥
∫

Ω

u(g)dν. (2)

Moreover, ν is unique and u is unique up to a positive affine transformation.

The family of Choquet expected utility preferences has been characterized in terms
of properties on preferences in various decision theoretic settings. Such axiomatic foun-
dations in a subjective Savage-style setup consistent with ours have been provided by
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Köbbeling and Wakker (2003) or Ghirardato, Maccheroni, Marinacci and Siniscalchi
(2003) (also Chateauneuf (1994) for the special case of a linear utility function). The
model has been also axiomatized in the Anscombe-Aumann framework with the outcome
space being a set of (simple) lotteries over an arbitrary outcome set (see, e.g., Schmeidler,
1986, 1989, and Chateauneuf, Eichberger, Grant, 2003). As mentioned already in the
introduction, this setting does not really fit the game theoretic set up. Other axioma-
tizations in the Savage-style setup make different structural assumption. For instance,
Gilboa (1987) and Sarin and Wakker (1992) obtain only atomless capacities, which is
unsuitable to games since a solution to a game may be a singleton. Wakker (1989),
Nakamura (1990), and Chew and Karni (1991) apply only to a finite state space while
type spaces in game theory can be large.

Instead of using some notion of support of a capacity to represent “belief” in an
ad hoc way as in some prior work on ambiguity in games, we define a preference-based
notion of (unambiguous) belief.

Definition 3 (Belief) An event E ∈ ΣΩ is said to be %-null if, for all acts f, g, h ∈ F ,
fEh % gEh. An event E is %-believed if Ω \ E is %-null.

An event E is not %-nonnull, i.e., fEh � gEh for some f, g, h ∈ F .

An Aside: Our goal is to axiomatize CEU preferences for the measurable case.

Throughout this section, we assume that X is a connected topological space and that
the set of (simple) acts is endowed with a product topology (i.e., all sets Xn with n ∈ N).

Before we provide the axioms that justify the CEU model for the measurable case,
we need additional notation. Two acts are said to be comonotonic (i.e., “common mono-
tonic”) if there are no two states ω, ω′ ∈ Ω such that f(ω) � g(ω) and f(ω′) ≺ g(ω′).
For a partition π = {E1, . . . , En} of Ω, we denote by Σπ be the sub-algebra of ΣΩ (i.e.,
the algebra of events generated by unions of events in π). Fπ is the set of all acts
defined on π (i.e., all Σπ-measurable acts). Hence, two acts f and g in Fπ are comono-
tonic if there are no distinct numbers i, j ∈ {1, . . . , n} such that f(Ei) � g(Ej) and
f(Ei) ≺ g(Ej). Let ρ(π) be a (rank-ordering) permutation on {1, . . . , n} induced by an
act f on π; i.e., {ρ(1) . . . , ρ(n)} such that f(Eρ(1)) % . . . % f(Eρ(n)) for some f ∈ Fπ. Let
Fρ(π) = {f ∈ Fπ : f(Eρ((1)) % . . . % f(Eρ(n))} be the set of comonotonic acts for a (rank-
ordering) permutation ρ(π). We call Fρ(π) a π-comoncone (i.e., a maximal comonotonic
set associated with a partition π for a permutation ρ(π)). Notice that Fπ is the union of
n! π-comoncons Fρ(π). The set of all acts F is the union of all sets Fρ(π).

Given a partition π, an event E ∈ π is %π-null (i.e., w.r.t. % restricted to acts in Fπ)
if for all acts f, g, h ∈ Fρ(π), fEh % gEh, otherwise E is %π-nonnull.

The first four axioms are standard.

Axiom 1 (Weak Order) % on F is a weak order (i.e., complete and transitive).
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Axiom 2 (Monotonicty) For all f, g ∈ F , if f(ω) % g(ω) for all ω ∈ Ω, then f % g.

The next axiom requires that % is continuous with respect to the product topology.

Axiom 3 (Continuity) For each partition π = {E1, . . . , En} of Ω and act f in Fπ,
{(x1, . . . , xn) ∈ Xn : f % g = (E1, x1; . . . ;En, xn)} and {(x1, . . . , xn) ∈ Xn : g =
(E1, x1; . . . ;En, xn) % f} are closed sets with respect to the product topology Xn.

The next axiom, Comonotonic-Tradeoff-Consistency, is crucial for the CEU model.
It is used to elicit equalities of utility differences, which, for cardinal utility, suffices to
determine the entire utility function. To formulate the axiom, we define an indifference
relation∼∗Fρ(π) derived from%. For a partition π of Ω, a π-comoncone Fρ(π), and outcomes

a, b, c, d ∈ X, we write
a	 b ∼∗Fρ(π) c	 d (3)

if there is a %π-nonnull event Ei ∈ π such that

aEf ∼ cEg and bEf ∼ dEg, (4)

with all the four acts aEif, bEig, cEif and dEig being comonotonic, i.e., elements of Fρ(π).
The interpretation is that receiving outcome a instead of b is as good as as receiving c
instead of d; i.e., it exactly offsets the receipt of f instead of g contingent on other events
in π than Ei (see Köberling and Wakker (2003)). Comonotonic-Tradeoff-Consistency
requires that improving an outcome in any relationship ∼∗Fρ(π) breaks that relationship.

That is, if a	b ∼∗Fρ(π) c	d then each outcome such that a′ � a precludes a′	b ∼∗Fρ(π) c	d.

Because of symmetry of the indifference relation ∼∗Fρ(π) , similar conditions hold for b, c, d.5

Axiom 4 (Comonotonic Trade-Off Consistency) Improving an outcome in any in-
difference relationship ∼∗Fρ(π) breaks that relationship.

The last axiom precludes that % is trivial.

Axiom 5 (Nontriviality) There exists at least one %-nonnull event.

Axioms 1 -5 are necessary and sufficient for % on F to be represented by CEU.

Theorem 1 % over F admits a CEU representation w.r.t. a continuous utility function
u : X → R and a unique capacity ν : ΣΩ → R if and only if Axioms 1-5 hold true.

Moreover, if there are two or more disjoint %-nonnull events, u is unique up to an
affine transformation, If there are no two disjoint %-nonnull events, u is unique up to a
strictly increasing transformation, ν assigns 1 to each %-nonnull event and 0 otherwise.

5By symmetry, we mean the following...
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Proof. We begin the proof by deriving first few helpful lemmas.6

By Axiom 5, we exclude the trivial case where f ∼ g for all f, g ∈ F . Since there is at
least one %-nonnull event, we need to distinguish two cases. In the first, non-degenerate
case, there are at least two disjoint %-nonnull events. This means that there exists a
partition π that contains at least two %π-nonnull events. In the second, degenerate case,
there are no two disjoint %-nonnull events. This means that each partition π contains
exactly one %π-believed event. For this case, Lemma 3 shows % over Fπ admits a CEU
representation with respect to a (unique) capacity νπ on Σπ and an (ordinal) utility
function uπ (i.e., a utility function that is unique up to an increasing transformation).

Lemma 1 and 2 apply to the non-degenerate case. Lemma 1 shows that for each
partition π containing at least two %-nonnull events, the preferences % over F restricted
to Fπ, denoted by %π, admits a CEU representation with respect to a (unique) capacity
νπ on Σπ and a (cardinal) utility function uπ (i.e., a utility function that is unique up to an
affine transformation). Lemma 2 shows that for two partitions π′ and π′′, the respective
CEU representations “fit together”, i.e., % over Fπ′ and % over Fπ′′ are represented with
respect to the “same” utility function u and furthermore, νπ′ and νπ′′ agree on the same
events; that is, for each Ei ∈ π and Fj in π′ such that Ei = Fj, νπ(Ei) = νπ′(Fj). This
implies that the CEU representation of % over Σπ-measurable acts is independent of π.

Lemma 1 Let π = {E1, . . . , En} be a partition and Fπ be the set of Σπ-measurable acts.
Suppose that π contains at least two %-nonnull events and that % over F satisfies Axioms
1 through 4. Then, % over Fπ admits a CEU representation; i.e., there exist a capacity
νπ : Σπ → R and a continuous utility function uπ : X → R such that for all f, g ∈ Fπ:

f % g if and only if

∫
Ω

uπ(f)dνπ ≥
∫

Ω

uπ(g)dνπ. (5)

Moreover, uπ is unique up to an affine transformation and νπ is uniquely determined.

Proof. Notice that for each partition π = {E1, . . . , En}, the set Fπ of Σπ-measurable
acts is isomorphic to the set of acts defined over a (finite) set of states with n elements.
Thus, we can apply Corollary 8 of Theorem 8 in Köbberling and Wakker (2003) showing
that, under Axioms 1-3 and (modified) 4, there exists a unique capacity νπ : Σπ → R and
a continuous (cardinal) utility function uπ : X → R that represent % over Fπ via (5).

Lemma 2 Let π′ and π′′ be two partitions of Ω, each containing at least two %-nonull
events. Let (νπ′ , uπ′) and (νπ′′ , uπ′′) be the respective CEU representations of % over Fπ′
and % over Fπ′′ (as obtained in Lemma 1). Then, uπ′ is an affine transformation of uπ′′.
Moreover, νπ(E) = νπ′(F ) if E = F for some E ∈ Σπ and F ∈ Σπ′.

6We denote by π̄, a fixed partition and by Fρ(π̄), the set of comonotonic acts for a permutation ρ(π̄).
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Proof. Consider two partitions π′ = {E1, . . . , Em} and π′′ = {F1, . . . , Fn}. Let π be
another partition defined as the join (i.e., the coarsest common refinement) of π′ and π′′:

π = {E1 ∩ F1, . . . , E1 ∩ Fn, . . . , Em ∩ F1, . . . , Em ∩ Fn} (6)

Suppose, without loss of generality, that E1 and E2 are %-nonnull events. Then, at least
one E1 ∩ Fj with j = 1, . . . , n is %-nonnull. Likewise, at least E2 ∩ Fj with j = 1, . . . , n
is %-essential. Hence, π contains at least two %-nonnull events. Thus, by Lemma 1, the
preference relation % over Fπ admits a CEU representation with respect to a unique νπ
and a continuous utility function uπ that is unique up to an affine transformation.

Consider constant acts (i.e., acts f ∈ Fπ such that f−(x) = Ω for all x ∈ X). For
each x, y ∈ X, x % y or x - y, by completeness. Suppose x % y. By the previous step,

x % y iff

∫
Ω

uπ(x)dνπ = uπ(x)νπ(G) ≥ uπ(y)ν(G) =

∫
Ω

uπ(y)dνπ (7)

uπ(x) ≥ uπ(y) (8)

where G ∈ Σπ is a %π-believed event. Hence, constant acts are ranked by uπ. From the
CEU representation (νπ′ , uπ′) of % over Fπ′ , we have x % y if and only if uπ′(x) ≥ uπ′(y).
Since Fπ and Fπ′ contain all constant acts, for all x, y ∈ X, uπ(x) ≥ uπ(y) if an only
if uπ′(x) ≥ uπ′(y) if and only if uπ′ = α + βuπ for each a ≥ 0 and b > 0. Hence, uπ′
is an affine transformation of uπ. The same argument applies to uπ′′ , showing that uπ′′
is an affine transformation of uπ. Thus, all utility functions uπ, uπ′ , and uπ′′ are affine
transformation of each other. Hence, we may choose one representation, e.g., let u := uπ.

Suppose A ∈ Σπ′ and B ∈ Σπ′′ are such that A = B. Hence, A =
⋃m
i=1Ei ∩ A and

B =
⋃n
j=1 Fj∩B. Clearly, A and B are in Σπ since A =

⋃n
j=1A∩Fj and B =

⋃m
i=1 B∩Ei.

Since νπ on Σπ is uniquely determined, νπ(A) = νπ(B).

Each Σπ′-measurable act is Σπ-measurable (i.e., Fπ′ ⊂ Fπ). Since such acts are ranked
by the same preference relation %, for each act f ∈ Fπ′ ∩ Fπ, we have∫

Ω

u(f)dνπ =

∫
Ω

u(f)dνπ′ , (9)

implying that νπ(E) = νπ′(E) for all E ∈ Σπ′ ∩ Σπ. Similar, since Fπ′′ ⊂ Fπ, νπ(F ) =
νπ′′(F ) for all F ∈ Σπ′′ ∩ Σπ. Hence, since νπ′ and νπ′′ are unique, νπ(A) = νπ(B),
νπ(A) = νπ′(A) and νπ(B) = νπ′′(B), we thus get νπ′(A) = νπ′′(B), as desired.

Lemma 3 Let π = {E1, . . . , En} be a partition and Fπ be the set of Σπ-measurable acts.
Suppose that π does not contain two %-nonnull events. Under Axioms 1-5, % over Fπ
admits a CEU representation with respect to a continuous utility function uπ : X → R
and a unique capacity νπ : Σπ → R assigning ν(E) = 1 for each %-nonnull event E, and
ν(E) = 0 otherwise. Moreover, uπ is unique up a strictly increasing transformation.
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Proof. When each %-nonnull event is %-believed, the existence of a utility function
on the outcome space follows from Theorem 2.2 of Krantz, Luce, Suppes and Tversky
(1971),

We summarize our lemmas and prove Theorem 1. The case where ΣΩ does not contain
two disjoint %-nonnull events is treated in Lemma 3. So, let us assume that ΣΩ contains
at least two disjoint %-nonnull events. By Lemma 1, for each partition π = {E1, . . . , En}
of Ω that contains at least two disjoint %-nonnull events, there exist a (unique) capacity
νπ on Σπ and a continuous utility function uπ : X → R that represent the preference
relation % over all Σπ-measurable acts in F (i.e., acts of the form f = (E1, x1; . . . ;En, xn
) via CEU. By Lemma 2, νπ and uπ are independent of π. Hence, we can construct ν on
ΣΩ as follows: For each A ∈ ΣΩ, ν(A) := νπ(A) for a partition π of Ω such that A ∈ Σπ.

Obviously, ν(∅) = 0 and ν(Ω) = 1. To show that ν is monotone, take two events
A,B ∈ ΣΩ such that A ⊆ B. Let π′ and π′′ be two partitions such that A = Ei and
B = Ej for some Ei ∈ π and Fj ∈ π′. Let one of the partitions contain at least two disjoint
%-nonnull events. Let π be the joint of π′ and π′′. By a similar arguments as in Lemma
2, π contains at least two disjoint %-nonnull events. Let νπ be the capacity on Σπ implied
by Lemma 1. Since νπ is monotone on ΣΩ, we have νπ(

⋃n
j=1 Ei ∩Fj) ≤ νπ(

⋃n
i=1 Ei ∩Fj),

or equivalently, νπ(A) ≤ νπ(B). Thus, ν(A) ≤ ν(B), showing that ν is monotone on ΣΩ.

Hence, for any two acts f, g ∈ F ,

Now, we summarize the construction. we have νπ(
⋃n
j=1 Ei ∩ Fj) = νπ′(Ei) and thus

νπ(
⋃m
i=1Ei ∩ Fj) = νπ′′(Fj).

Hence, νπ̃(E) = νπ(E) and νπ̃(F ) = νπ′(F ) and thus νπ(E) = νπ′(F ).

Adam, fill in details on K¨bberling and Wakker for measurable spaces?

While a preference-based notion of belief is conceptually important when “importing”
decision theory into game theory, it is useful in applications to have a characterization
of belief at the level of capacities.7

2.2 Unambiguously Believed Events

Proposition 1 Let � be a Choquet expected utility preference with respect to a capacity
ν on ΣΩ. The following statements are equivalent:

(i) Event E ∈ ΣΩ is %-believed.

(ii) ν((Ω \ E) ∪ F ) = ν(F ) for all events F ∈ ΣΩ, F ⊆ E.

(iii) ν(G ∪ F ) = ν(F ) for all F,G ∈ ΣΩ with G ⊆ Ω \ E.

From now on, we take statement (ii) quasi as a definition of belief.

7This result comes from an earlier unfinished project of Amanda Friedenberg and Burkhard.
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While our notion of belief goes back essentially to subjective expected utility à la
Savage (1954), it has also been used by Epstein (1997), Morris, (1997), Ghiradato and
Le Breton (1999), and Chen and Luo (2012) when considering preferences allowing for
ambiguity in an interactive setting.

The notion of belief is closely related to the preference-based notion of “unambiguous
events”. More precisely, if an event is believed, it is an unambiguous event in the sense
of Sarin and Wakker (1992) and Nehring (1999). An event E ∈ ΣΩ is unambiguous if %
satisfies the Sure-Thing Principle constrained to E and Ω \ E. The following definition
is due to Sarin and Wakker (1992).

Definition 4 (Unambiguous Event) An event E ∈ ΣΩ is said to be %-unambiguous
if, for any f, g, h, h′ ∈ F ,

fEh % gEh if and only if fEh
′ % gEh

′, and
fΩ\Eh % gΩ\Eh if and only if fΩ\Eh

′ % gΩ\Eh
′.

Otherwise, E is called %-ambiguous.

In terms of a capacity ν, unambiguous events admit the following characterization.
This characterization has been proved previously in a finite set up by Dominiak and Lefort
(2011).8 Our proof in the appendix extends Dominiak and Lefort (2011, Proposition 3.1)
to the measurable case.

Proposition 2 Let � be a Choquet expected utility preference with respect to a capacity
ν on ΣΩ. An event E ∈ ΣΩ is %-unambiguous if and only if, for any F ∈ ΣΩ,

ν(F ) = ν(F ∩ E) + ν(F ∩ (Ω \ E)). (10)

Condition (10) says that the capacity ν is additively-separable across the unambiguous
events. Intuitively, one would expect that there is a close relationship between additivity
of a capacity and unambiguous events. However, as pointed out by Nehring (1999), we
know that the standard additivity condition is not sufficient for an event to be unam-
biguous (unless the capacity is convex). Example 6 in the appendix illustrates, additivity
of a capacity w.r.t. to an event does not imply that the event is perceived unambiguous.

Also, additivity of a capacity on every (bi)partition {E,Ω\E}, i.e., ν(E)+ν(Ω\E) = 1
for any E ∈ FE does not imply that all events are unambiguous. This in turn means that
if there exists an ambiguous event w.r.t. to a capacity ν, it does not imply that there
exists an event E ∈ FE on which the capacity is non-additive, i.e., ν(E) + ν(Ω \E) 6= 1.
This is illustrated in Example 7 in the appendix.

We have that an event is believed if and only if it is an unambiguous event with the
capacity value 1.

8Nehring (1999) provides another characterization of unambiguous events in a finite setup with a
linear utility function.
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Proposition 3 Let � be a Choquet expected utility preference with a capacity ν on ΣΩ.
The following statements are equivalent:

(i) Event E ∈ ΣΩ is %-believed.

(ii) Event E is %-unambiguous with ν(E) = 1.

(iii) Event Ω \ E is %-unambiguous with ν(Ω \ E) = 0.

In Appendix A.8 we relate our notion of belief to notions of support of a capacity
that have been studied previously in the game-theoretic literature. It is clear that unlike
for Subjective Expected Utility theory, these notions of support for capacities are not
necessarily equivalent to the notion of belief.

2.3 Properties of Belief

Our epistemic characterization is facilitated by standard properties of beliefs.

Proposition 4 9 Let � be a Choquet expected utility preference w.r.t. to a capacity ν
on ΣΩ. Then

Necessitation: Ω is �-believed.

Monotonicity: If E ⊆ F , E,F ∈ ΣΩ, then E being �-believed implies that F is
�-believed.

Conjunction I: Let E1, E2, . . . ∈ ΣΩ. If
⋂
j Ej is �-believed, then E1, E2, .. are each

�-believed.

Finite Conjunction: Let E1, . . . , En ∈ ΣΩ be �-believed. Then
⋂n
i=1Ei is �-

believed.

Note that we just have finite conjunction. It can be the case that measurable events
E1, E2, . . . may be �-believed, even though

⋂
iEi is not �-believed. See the appendix

for an example.10 However, the following continuity assumption on capacities yields the
“full” conjunction property of belief. A capacity ν is lower continuous if

lim
n→∞

ν (En) = ν

(
∞⋃
n=1

En

)
,

for any sequence of events E1, E2, ... ∈ ΣΩ with En ⊆ En+1. While this assumption
could be stated in terms of the primitive preference �, it is essentially impossible to
test it behaviorally. That’s why we impose it directly on the capacity and not on the
underlying preference relation �.

9These results stem from an earlier unfinished project of Amanda Friedenberg and Burkhard.
10This example due to Amanda Friedenberg.
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Lemma 4 11 Let � be a Choquet expected utility preference w.r.t. to a lower continuous
capacity ν on ΣΩ. Further, consider any sequence of events En ∈ ΣΩ, n = 1, 2, . . ., with
En+1 ⊆ En. If each E1, E2, . . . is �-believed, then

⋂∞
n=1En is �-believed.

In the appendix we show that replacing lower continuity with regularity may let
conjunction fail.12

3 Choquet Rationalizability

Fix a finite strategic game form 〈I, (Ai)i∈I , (oi)i∈I〉, for which I is a nonempty finite set of
players and for each player i ∈ I, Ai is a nonempty finite set of actions and oi : A −→ X
is the outcome function with A := ×i∈IAi that assigns to each profile of actions a ∈ A an
outcome oi(a) in the previously introduced outcome space X. As usual, for any collection
of sets (Yi)i∈I we denote by Y = ×i∈IYi and Y−i = ×j∈I\{i}Yj with generic elements y
and y−i, respectively.

Next we connect Choquet expected utility theory to games in strategic form. Given
a strategic game form 〈I, (Ai), (oi)〉, for any player i ∈ I and any action ai ∈ Ai we
denote by fai : A−i −→ X the act of player i associated with action ai defined by
fai(a−i) := oi(ai, a−i). The set of opponents’ action profiles A−i takes on the role of
the state space in Choquet expected utility theory signifying the fact we model strategic
uncertainty. The strategic game form 〈I, (Ai), (oi)〉 together with the utility functions
(ui)i∈I over outcomes in X define a game in strategic form 〈I, (Ai), (ui ◦ oi)〉.

Let νi be a capacity on A−i. We say that a∗i ∈ Ai is a Choquet best response to νi if

a∗i ∈ arg max
ai∈Ai

∫
A−i

ui(oi(ai, a−i))dνi(a−i), (11)

where the integral is the Choquet integral defined above.

Denote by C(A−i) the set of all capacities on A−i.

Definition 5 (Choquet rationalizability) For i ∈ I and k ≥ 1 define inductively,

C1
i = C(A−i)

R1
i =

{
ai ∈ Ai :

there exists νi ∈ C1
i for which ai

is a Choquet best response

}
...

Ck+1
i =

{
νi ∈ Ck

i :
νi((A−i \Rk

−i) ∪ F ) = νi(F )
for all F ⊆ Rk

−i

}
Rk+1
i =

{
ai ∈ Ai :

there exists νi ∈ Ck+1
i for which

ai is a Choquet best response

}
11This lemma stem from an earlier unfinished project of Amanda Friedenberg and Burkhard.
12The example and the arguments are due to Amanda Friedenberg.
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The set of Choquet rationalizable actions is

R∞i =
∞⋂
k=1

Rk
i .

Choquet rationalizability is defined as a reduction procedure on sets of capacities. It
implies a reduction procedure on sets of actions for each player.

Alternatively we can consider a “fixed-point” definition suggested verbally in the last
section of Ghirardato and Le Breton (1999, p. 15).

Definition 6 (Fixed-point definition) Define (Ri)i∈I with Ri ⊆ Ai for i ∈ I to be the
largest set such that every ai ∈ Ri is a Choquet best response with respect to a capacity
νi ∈ C(A−i) satisfying νi((A−i \R−i) ∪ F ) = νi(F ) for all F ⊆ R−i.

Remark 1 If (Ri)i∈I and (R̃i)i∈I are two collections of sets, each satisfying Definition 6,
then Ri = R̃i for all i ∈ I.

In light of Remark 1 we are justified to refer to any (Ri)i∈I as the largest set satisfying
the property of Definition 6.

The fixed-point definition of Choquet rationalizability is equivalent to the inductive
definition.

Theorem 2 For any finite game in strategic form, Ri = R∞i for all i ∈ I,.

This result parallels the equivalence of the fixed-point definition and inductive defi-
nition of standard rationalizability à la Bernheim (1984) and Pearce (1984).

3.1 Iterative Dominance in Extended Games

Choquet rationalizability is a reduction procedure on beliefs represented by capacities. In
applications it is sometimes easier to use a reduction procedure on actions instead. More-
over, the computation of Choquet expected utilities may be viewed as an impediment
to applications of Choquet expected utility theory in games. Fortunately, we can char-
acterize Choquet rationalizability by an iterated elimination procedure akin to iterated
elimination of strictly dominated actions a suitably extended game that does not require
the computation of the Choquet integral. In this extended game, a player’s set of actions
is the set of nonempty subsets of actions in the underlying. Moreover, payoffs for any
combinations of subsets of actions in the underlying game correspond to the minimum
payoffs achieved with actions in the subset. The precise definition is as follows:
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Definition 7 (Extended Game) Given a game in strategic form G = 〈I, (Ai)i∈I , (ui ◦
oi)i∈I〉, we define an associated extended game G = 〈I, (Ai)i∈I , (ũi)i∈I〉 in which the set
of players is the set of players I in the underlying game G, player i’s set of actions
Ai := 2Ai \ {∅} is the set of nonempty subsets of actions of the underlying game G, and
player i’s utility function ũi : A −→ R is defined by ũi(A

′
i, A

′
−i) = mina∈A′i×A′−i ui(oi(a))

for all (A′i, A
′
−i) ∈ A := ×i∈IAi.

The following example illustrates the construction of extended games.

Example 1 Consider the following 3× 2 game (left) and the associated extended game
(right):

G l r
u 4, 0 0, 4
d 0, 4 4, 0
m 1, 2 1, 2

G {l} {r} {l, r}
{u} 4, 0 0, 4 0, 0
{d} 0, 4 4, 0 0, 0
{m} 1, 2 1, 2 1, 2
{u, d} 0, 0 0, 0 0, 0
{u,m} 1, 0 0, 2 0, 0
{d,m} 0, 2 1, 0 0, 0
{u, d,m} 0, 0 0, 0 0, 0

We like to stress that we view the extended game as a technical device that facili-
tates computing Choquet rationalizable actions without the need to compute Choquet
expected utility in games. Although we do not champion this interpretation, one may
interpret the extended game as a game in which players can chose ambiguous actions in
the sense of choosing non-singleton subsets of actions.

A subset Y ⊆ A is called a restriction of player i (or an i-product set) if Y = Yi×Y−i
for some Yi ⊆ Ai and Y−i ⊆ A−i. Clearly, A itself is a restriction for every player i ∈ N .
Given a restriction Y = Yi × Y−i of player i in the game G, the associated restriction in
the associated extended game G is defined by Y = Yi × Y−i where Yi = 2Yi \ {∅} and
Y−i = 2Y−i \ {∅}.

For each player i ∈ I, let A◦i ⊆ Ai denote the subset of singleton subsets in Ai.
These are the actions in the extended game that actually correspond to actions in the
underlying game.

Definition 8 (Strict Domination in Extended Games) A subset of actions A′i ∈
Ai is strictly dominated in player i’s restriction Y ⊆ A by a mixed action in the extended
game G if A′i ∈ Yi, Y−i 6= ∅ and there exists ai ∈ A′i for which there exists a mixed action
αi ∈ ∆(Yi ∩ A◦i ) such that

ũi(αi, A
′
−i) > ũi({ai}, A′−i) for all A′−i ∈ Y−i,

where ∆(Yi ∩ A◦i ) denotes the set of probability measures on Yi ∩ A◦i and (with some
abuse of notation) ũi(αi, A

′
−i) is player i’s expected utility from playing the mixed action

αi when i’s opponents play A′−i in the extended game.
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Three remarks are in order: First, a nonempty subset of actions is strictly dominated
whenever there is an action (an object of choice that can actually be played by the player)
in this set that is strictly dominated. Second, any mixed action that dominates an action
mixes only over singleton action sets in the extended game. Thus, they do correspond
to mixtures in the underlying game. Third, the importance of the extended game comes
from how payoffs are evaluated. In particular, the mixed action dominating an action
must yield a strictly larger payoff also for non-singleton action profiles of opponents. This
suggests that there might be actions that are strictly dominated in the underlying game
(with respect to a mixed action) but are not eliminated in the extended game. We will
explore this aspect in Section 4 when we study the effect of ambiguity attitudes.

Definition 9 (Never Choquet Best Response) We say that an action ai is never
a Choquet best response on player i’s restriction Y if there does not exist a capacity
νi ∈ C(Y−i) for which it is a Choquet best response.

The following lemma is the analogue to Pearce (1984, Lemma 3) for Choquet expected
utility.

Lemma 5 Given a finite game in strategic form G = 〈I, (Ai)i∈I , (ui ◦ oi)i∈I〉, action
ai ∈ Ai is never a Choquet best response on player i’s restriction Y if and only if {ai} is
strictly dominated in player i’s associated restriction Y of the associated extended game
G = 〈I, (Ai)i∈I , (ũi)i∈I〉.

The proof follows directly from Ghirardato and Le Breton (1999, Theorems 1 and 2).
They consider single person decision problems under ambiguity. Their notion of an act
being Choquet rational corresponds in our setting to there exists a capacity with which
the corresponding action is a Choquet best response. Their notion of extended decision
problem corresponds to our notion of extended game in the single player case. In their
Theorem 2 they show that an act is Choquet rational (w.r.t to any capacity) if and only if
it is Shafer rational.13 They also show in their Theorem 1 that an act is Shafer rational if
and only if is not strictly dominated by mixtures in the extended problem. Their notion
of strict domination corresponds to our notion of strict domination in the extended game
in the case of single players and singleton action sets.

Definition 10 (Iterated Strict Dominance) For every player i ∈ I and every of
player i’s extended restriction Y ⊆ A define

Ui(Y) := {A′i ∈ Ai | A′i is not strictly dominated in Y }.

Define now inductively for i ∈ I and k ≥ 0,

13An act is Shafer rational if it is rational w.r.t. a special capacity called a belief function.
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U0
i (A) = Ai

Uk+1
i (A) = Ui(U

k(A)) for k ≥ 0

U∞i (A) =
⋂∞
k=0 U

k
i (A).

U∞(A) is called the maximal reduction. It is the set of profiles of action sets that
survive iterated elimination of strictly dominated action sets (IESDA) in the extended
game.

For any extended restriction Y , U(Y) = ×i∈IUi(Y) is an extended restriction of every
player. Note that when we defined the operator Ui on player i’s extended restrictions, we
allowed A′i ∈ Ai (instead of requiring that A′i is in player i’s extended restriction). The
following property holds:

Remark 2 For any player i ∈ I and k ≥ 0, Uk+1
i (A) ⊆ Uk

i (A).

We show that Choquet rationalizability is characterized by iterated eliminated of
strictly dominated actions in the associated extended game.

For i ∈ I and k ≥ 0, define Aki = {ai ∈ Ai | ai ∈ A′i for some A′i ∈ Uk
i (A)} and

A∞i = {ai ∈ Ai | ai ∈ A′i for some A′i ∈ U∞i (A)}. Aki are the actions of player i that
survive k-levels of iterate elimination of strictly dominated actions in the associated
extended game. The following remark follows immediately from the definition of strict
dominance in the extended game.

Remark 3 For any i ∈ I, ai ∈ Aki if and only if {ai} ∈ Uk
i (A) for any k ≥ 0 and

ai ∈ A∞i if and only if {ai} ∈ U∞i (A).

We are ready to state our characterization result: level-k Choquet rationalizable
actions are characterizes by k-level iterative elimination of strictly dominated actions in
the extended game. Moreover, Choquet rationalizable actions are equivalent to iterative
elimination of strictly dominated actions in the extended game.

Theorem 3 For any finite strategic game, any player i ∈ I, and k ≥ 1, Rk
i = Aki and

R∞i = A∞i .

3.2 Representation-based Rationalizability Notions

This section focuses on a special case of a seminal paper by Epstein (1997). He intro-
duced a representation-based rationalizability concept for games with general preferences.
Although his class of preferences include Choquet expected utility, the case of Choquet
expected utility has not been developed rigorously. We fill in the details.
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To defined Epstein’s (1997) representation-based notion for the case of Choquet ra-
tionalizability, let Rui(A−i) be the set of Choquet expected utility functions evaluating
acts defined on A−i given the utility function ui on outcomes in X. Moreover, we write
Rui(A−i | E) for player i’s set of Choquet expected utility functions that believe the
event E ⊆ A−i. More precisely, Rui(A−i | E) is the set of Choquet expected utility
functions that correspond to a preference � for which the event E is �-believed.14

The following definitions specialize Epstein’s (1997) rationalizability notions to the
case of Choquet expected utility:

Definition 11 (Representation-based) For i ∈ I, define inductively,

E0
i = Ai

and for k ≥ 1,

Ek
i =

{
ai ∈ Ai :

There exist CEUi ∈ Rui(A−i | Ek−1
−i ) s.t.

CEUi(f
ai) ≥ CEUi(g) for any g ∈ FAi

}
The set of representation-based Choquet rationalizable actions is defined by

E∞i =
∞⋂
k=0

Ek
i .

Epstein (1997) also provided an alternative “fixed”-point definition, which we phrase
for the case of Choquet expected utility as follows:

Definition 12 (Fixed-point definition) Define (Ei) with Ei ⊆ Ai for i ∈ I to be the
largest set such that for every ai ∈ Ei there exist a Choquet expected utility function
CEUi ∈ Rui(A−i | E−i) such that CEUi(f

ai) ≥ CEUi(g) for all g ∈ FA−i.

Epstein (1997, Theorem 3.2) implies the equivalence of both notions:

Theorem 4 (Epstein, 1997) For any finite strategic game and any player i ∈ I, Ei =
E∞i for all i ∈ I.

We verify that Epstein’s notion applied to the case of Choquet expected utility is
indeed equivalent to our notion Choquet rationalizability.

Theorem 5 For any finite game in strategic form, any player i ∈ I, and k ≥ 1, Rk
i = Ek

i

and R∞i = E∞i .

Epstein (1997, Theorem 3.2) proved nonemptyness of Ei for all i ∈ I. Together with
Theorem 5 it implies Theorem ?? as a corollary.

14Epstein (1997) uses the term knowledge instead of belief but he defines it as in our setting as
complement to Savage null.
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4 Common Belief in Choquet Rationality

In this section, we provide an epistemic characterization of Choquet rationalizability. To
this end, we introduce type spaces that allow us to formalize each player’s belief over
other player’s behavior, their beliefs, etc.

Fix a game in strategic form 〈I, (Ai), (ui ◦ oi)〉. A capacity-type space is a tuple
〈(Ti)i∈I , (si)i∈I , (τi)i∈I〉 with Ti being player i’s measurable space of types, si : Ti −→ Ai
a measurable strategy mapping, and τi : Ti −→ C(T−i) being player i’s measurable type
mapping that maps each type to a capacity over opponents’ types. The strategy mapping
si should not be interpreted as an object of choice of player i. Rather, it is just a device
that allows us to specify for each type which action she plays.

For any measurable space 〈Ω,ΣΩ〉, we consider 〈C(Ω),ΣC(Ω)〉 as a measurable space
for which the σ-algebra ΣC(Ω) is generated by sets {ν ∈ C(Ω) : ν(E) ≥ x} for E ∈ ΣΩ

and x ∈ [0, 1]. Note that for any event E ∈ ΣΩ, the set of capacities that believe E is a
measurable set in ΣC(Ω).

For the following exposition, unless noted otherwise, fix a capacity type space 〈(Ti)i∈I , (si)i∈I , (τi)i∈I〉
for a game in strategic form 〈I, (Ai)i∈I , (ui ◦ oi)i∈I〉.

Type ti’s conjecture over A−i is defined by τi(ti)|A−i (E) := τi(ti) ((s−i)
−1(E)) for any

E ⊆ A−i. This is well-defined since for any j ∈ I, sj is measurable.

In light of Proposition 1 (ii), we define:

Definition 13 Type ti believes the event E ∈ ΣT−i if τi(ti)((T−i \ E) ∪ F ) = τi(ti)(F )
for all events F ∈ ΣT−i, F ⊆ E.

Next we define Choquet rationality and level-k mutual belief in Choquet rationality
as well as Choquet rationality and common belief in Choquet rationality.

Definition 14 For i ∈ I and k ≥ 1, define inductively,

B1CRi =

{
ti ∈ Ti :

si(ti) is a Choquet best
response to τi(ti)|A−i

}
Bk+1CRi =

{
ti ∈ BkCRi : ti believes BkCR−i

}
The set of player i’s types that satisfy Choquet rationality and common belief in Choquet
rationality is

CBCRi =
∞⋂
k=1

BkCRi

Remark 4 Note that for any player i ∈ I, the set B1CRi is measurable because both si
and τi are measurable. Further, for any measurable set E ∈ ΣT−i, {ti ∈ Ti : ti believes E}
is measurable. Thus, for any k ≥ 1, Bk+1CRi is measurable and CBCRi is measurable.
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Note that since the notion of Choquet rationality and common belief in Choquet ra-
tionality (Definition 20) consists of a conjunction of events, lower continuity of capacities
would insure that it is well-defined.

Compared to the definition of Choquet rationalizability, Definition 20 is an epistemic
(or better doxastic) notion as it is stated at the level of types that capture player’s beliefs
about other players. Characterizing both notions in terms of the other would provide
an epistemic foundation for Choquet rationalizability in terms of Choquet rationality
and common belief in Choquet rationality. That is, we seek to show that any type
satisfying Choquet rationality and common belief in Choquet rationality takes a Choquet
rationalizability action and for any Choquet rationalizable action there exists a type
satisfying Choquet rationality and common belief in Choquet rationality that takes this
action. Of course, this epistemic characterization would be relative to the type space.
It pertains only to beliefs captured by some type in the type space. A characterization
obtained in a particular type space may fail to hold in a different type space. Thus, it is
desirable to provide such an epistemic characterization in rich type spaces.

4.1 Rich Type Spaces

One notion of rich type space used in the epistemic literature is beliefs-completeness
(e.g., Brandenburger, Friedenberg, and Keisler, 2008). Roughly, a type space is beliefs-
complete if every belief is captured by some type. Formally, in the context of capacity
type-spaces this amounts to requiring that for each player i ∈ I we have that the type
mapping τi : Ti −→ C(T−i) is a surjection. Unfortunately, in the Appendix C we show
that beliefs-complete capacity type spaces do not exist for the general set of capaci-
ties.15 We show this using Cantor’s diagonal arguments very much in the spirit of Bran-
denburger’s (2003) impossibility result for possibility structures. This is not surprising
because beliefs-completeness of probabilistic type spaces relies on countable additivity
of probability measures, which imply continuity of probability measures. General ca-
pacities are not necessarily additive and lack any continuity properties without further
assumptions. This underlies the importance of continuity of capacities for the epistemic
characterization.

In order to facilitate modeling rich spaces that capture beliefs about beliefs about
etc. in a setting of measurable spaces, we impose a stronger continuity assumption
on capacities that is satisfied automatically in the finite case. Formally, from now on,
for any measurable space (Ω,ΣΩ) with σ-algebra ΣΩ, denote now by C(Ω) the set of
continuous capacities on Ω. A capacity ν : ΣΩ → R is continuous if for any increasing
(resp. decreasing) sequence of measurable sets {En}, En ∈ ΣΩ for n = 1, 2, ..., with
E1 ⊆ E2 ⊆ ... (resp. E1 ⊇ E2 ⊇ ...) and

⋃
nEn = E (resp.

⋂
nEn = E), we have

limn→∞ ν(En) = ν(E). Again, we view continuity of capacities as a technical assumption.
While it is possible to characterize it in terms of the underlying Choquet expected utility

15This result is also from an earlier unfinished project of Amanda Friedenberg and Burkhard.
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preference, it is essentially impossible to test behaviorally. Thus, it makes sense to just
state it at the level of capacities.

Further, we let F(Ω) denote now the set of all bounded ΣΩ-measurable functions from
Ω to R+.

Heifetz and Samet (1998) show the existence of the universal type space when beliefs
are countable additive probability measures and the space of underlying uncertainties is
a measurable space. They point out though that the crucial property in their proof is
continuity of probability measures rather than countable additivity per se. This leads
them to claim that their construction “can be read now, verbatim, as a proof of the
existence of a universal type space, when belief is represented by monotonic, continuous
set functions” (Heifetz and Samet, 1998, p. 339, see also Ganguli, Heifetz, and Lee,
2016, Fn. 12). When doing so, we realized two caveats. First, in some parts of their
construction they use the uniqueness of the Dirac measure. Yet, a capacity that assigns
1 to a state is not unique. Second, type mappings preserve belief operators that model
belief in the context of probabilistic beliefs. Yet, as we pointed out in earlier sections the
notion of belief under Choquet expected utility is more subtle. For those reasons we do
not see that their construction proves “verbatim” the existence of a universal capacity
type space. Therefore, we adopt an alternative approach and derive the universal capacity
type space from the universal CEU-representation type space in Appendix D.

Continuous capacities allow for monotone continuous Choquet representations as
proved in Appendix. Applying results on the existence of universal representation type
spaces in the measurable case for general monotone continuous representations from
Heifetz, Ganguli, and Lee (2016) allow us to show the existence of the universal CEU-
representation type space (see Appendix for details). In a second step, we map the
structure of the collection of CEU-representation type spaces and type morphisms to the
collection of continuous capacity type spaces and type morphisms using ideas from cat-
egory theory. This allows us to claim the existence of the universal capacity type space
in the case of measurable spaces and continuous capacities (again, see the Appendix for
details). Recently, we also became aware of an unpublished paper by Pinter (2012) who
shows the existence of a universal capacity type space for lower continuous capacities in
the measurable case.16

4.2 Epistemic Characterization

The following analysis takes place in the universal capacity type space. We charac-
terize Choquet rationalizability by Choquet rationality and common belief in Choquet
rationality. In doing so, we also prove that for every level k = 1, ..., level-k Choquet
rationalizability is captured by Choquet rationality and level-k-mutual belief in Choquet

16Related work is on rich type spaces that allow for ambiguity Epstein and Wang (1996) (for CEU-
representation type spaces in the topological case), Ahn (2007) (for sets of countable additive probability
measures), and Di Tillo (2008) (for possibly incomplete preferences type spaces).
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rationality.

Theorem 6 For i ∈ I, k = 1, ..., Rk
i = si(B

kCRi). Moreover, R∞i = si(CBCRi).

One may be tempted to view the epistemic characterization of Theorem 6 with a
caveat since we use the universal capacity type space in the measurable case. Heifetz
and Samet (1999) showed by example that the universal probability type space in the
measurable case may not contain all coherent hierarchies of beliefs. That is, there are
some coherent hierarchies of beliefs that cannot be uniquely extended to a countable
additive probability measure on the type space.17 Since probability measures are a special
case of capacities, we would expect a similar impossibility result to apply to the universal
continuous capacity type space in the measurable case. It could mean that our universal
capacity type space may not capture all hierarchies of beliefs. Yet, from a decision
theoretic point of view this may not be as problematic as it may look at the first glance.
Recall that we are interested in modeling players that are Choquet expected utility
maximizers. Choquet expected utility delivers a capacity, not a sequence of capacities.
If there is a hierarchy of capacity beliefs that cannot be expressed as a belief on the type
space, then essentially such a hierarchy is not applicable to a Choquet expected utility
maximizer on the universal capacity type space. That is, when considering a Choquet
expected utility maximizer on the universal capacity type space, only hierarchies of beliefs
that can be “pulled” out are relevant.

For probabilistic type spaces, the problem is avoided by assuming familiar topological
spaces such as compact Hausdorff (Mertens and Zamir, 1985), Hausdorff (Heifetz, 1993)
or Polish (Brandenburger and Dekel, 1994). In such cases, aforementioned have shown
that the universal probability type spaces consists of all coherent belief hierarchies. We
think that the “topological program” could also be carried out in the case of Choquet
expected utility. In fact, a construction very similar to ours in the appendix but using
Epstein and Wang (1996) in stead of Ganguli, Heifetz, and Lee (2016) should yield a
universal capacity type space in the typological case. In a seminal paper, Epstein and
Wang (1996) proved the existence of a universal utility representation type space in the
topological case. Their result applies to Choquet expected utility representations.

Previous versions of Theorem 6 appeared in the seminal paper by Epstein (1997) using
a representation-based notion of rationalizability (also mentioned in the working paper by
Ghirardato and Le Breton, 1999). As mentioned earlier, he considers a rationalizability
notion for a general classes of preferences. Although his general approach allows for
Choquet expected utility, he did not show the result for Choquet expected utility players
in particular and the version of Choquet expected utility required in the context of games
had not been developed in 1997. We know from epistemic literature that restrictions on
preferences and beliefs may pose challenges for characterizations. Essentially we show

17Note that their counterexample features an infinite space of states of nature, while our space of
underlying uncertainties is finite (i.e., finite sets of actions).
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that restricting his classes of preferences to Choquet expected utility does indeed allow for
the characterization. His result is still not a generalization of ours since he considers the
topological case while we consider the measurable case. Moreover, instead of a type space
commonly considered in game theory he worked with a utility representation type space
introduced in Epstein and Wang (1996). Such a representation-based type space is very
sensible when working with general preferences. Yet, in order to facilitate comparison
with results in the probabilistic case, it is also useful to have a characterization at the
level of capacity type spaces. So we view our results as complementary to his.

5 Common Belief in Ambiguity Attitudes

The family of Choquet expected utility preferences is a rich model that allows to ac-
commodate ambiguity and players’ attitudes towards it. In decision theoretic terms, an
individual displays aversion (resp., love) towards ambiguity if she prefers (resp., dislikes)
an act that (state-wise) averages utilities of outcomes of two acts to the less favorable
act among the two.

To formalize ambiguity attitudes, we use the technique of “preference averages” in-
troduced by Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003).18 Call an event
E ∈ ΣΩ essential if x � xEy � y for some x, y ∈ X. An act xEy that returns an outcome
x on E and y on Ω \ E is called a bet. The certainty equivalent of xEz is denoted by
c(xEz) ∈ X and defined by xEz ∼ c(xEz).

We define as in Ghirardato et al. (2003):

Definition 15 Let E be an essential event. Given x, y ∈ X, if x % y we say that a
consequence z ∈ X is a preference average of x and y (given E) if x % z % y and

xEy ∼ (c(xEz))E (c(zEy)) .

If x % y, z is said to be a preference average of x and y if it is a preference average of y
and x.

“Subjective mixtures” of acts can be defined state-wise. For each f, g ∈ F and
α ∈ [0, 1], define αf ⊕ (1 − α)g to be the act that returns αf(ω) ⊕ (1 − α)g(ω) = z in
state ω ∈ Ω where z satisfies

f(ω)Eg(ω) ∼ (c(f(s)Ez))E (c(g(s)Ez))

for some essential event E.

18Recall that we do not have Anscombe-Aumann acts available in our game theoretic framework.
Ghirardato et al. (2003) use the technique of preference averages to axiomatize the Choquet expected
utility model in the the Savage-style framework. In their words (p. 1898), “subjective mixtures enable
us to readily extend the AA-style axiomatics and techniques to a fully subjective environment”.
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Now, we can define the standard notions of ambiguity attitudes using subjective
mixtures:

Definition 16 (Ambiguity Attitudes) Let % be a preference relation on F . For any
f, g ∈ F and any α ∈ (0, 1], the preference relation % is ambiguity averse if,

f ∼ g implies αf ⊕ (1− α)g % f.

The preference relation % is ambiguity loving if

f ∼ g implies αf ⊕ (1− α)g - f.

Notice that a preference relation% is ambiguity neutral (i.e., it coincides with the SEU
form) if % is both ambiguity averse and loving. Attitudes towards ambiguity revealed by
Choquet preferences are closely related to the form of capacities.

Definition 17 (Convex/concave capacity) A capacity ν : ΣΩ −→ R is said to be

(i) convex, if ν(E) + ν(F ) ≤ ν(E ∪ F ) + ν(E ∩ F ); and

(ii) concave, if ν(E) + ν(F ) ≥ ν(E ∪ F ) + ν(E ∩ F ),

for all events E,F ∈ ΣΩ.

The following result is analogous to Schmeidler (1989) and Wakker (1990). Ambiguity
aversion (resp., love) is characterized by convex (resp., concave) capacities.19

Proposition 5 Let % be a Choquet expected utility preference relation on F with respect
to a capacity ν. Then, % is ambiguity averse (resp., loving) if and only if ν is convex
(resp., concave).

This “prelude” on ambiguity attitudes allows us now study rational behavior under
common belief in Choquet rationality and further restrictions imposed on player’s am-
biguity attitude. In particular, we are interested in comparing the set of rationalizable
actions that are feasible under common belief in Choquet rationality and common belief
in ambiguity aversion (resp. ambiguity love) with the set of rationalizable actions under
common belief in ambiguity neutrality (i.e., subjective expected utility).

19There are other notions of ambiguity aversion in the context of Choquet expected utility. For
instance, Epstein (1999) attributes ambiguity aversion to balanced capacities. A capacity is balanced
if its core is a nonempty set. Every convex capacity is balanced, but not vice versa. However, for the
analysis of rationalizable behavior under common belief Choquet rationality and ambiguity aversion,
assuming ambiguity aversion in a weaker sense does not matter.
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5.1 Choquet Rationalizability with Restrictions on Ambiguity
Attitudes

Let Cri(A−i) be the set of all capacities that satisfy restriction ri ⊆ {conv, conc, add}
that stand for concave, convex, and additive capacities (i.e., probabilities), respectively.

Define restricted Choquet rationalizability (henceforth, the r-Choquet rationalizabil-
ity) as follows:

Definition 18 (r-Choquet rationalizability) For i ∈ I, r = (ri)i∈I with ri ∈ {conv, conc, add},
and k ≥ 1 define inductively,

Cr,1
i = Cri(A−i)

Rr,1
i =

{
ai ∈ Ai :

there exists νi ∈ Cr,1
i for which ai

is a Choquet best response

}
...

Cr,k+1
i =

{
νi ∈ Cr,k

i :
νi((A−i \Rk

−i) ∪ F ) = νi(F )
for all F ⊆ Rk

−i

}
Rr,k+1
i =

{
ai ∈ Ai :

there exists νi ∈ Cr,k+1
i for which

ai is a Choquet best response

}
The set of r-Choquet rationalizable actions is

Rr,∞
i =

∞⋂
k=1

Rr,k
i .

Although we allow players to display different ambiguity attitudes in the above def-
inition, we are mainly interested in “symmetric” restrictions in which ri = rj for all
i, j ∈ I. In such a case, we simply write r = conv, r = conc, or r = add. add-Choquet
rationalizability is just standard rationalizability à la Bernheim (1984) and Pearce (1984).

As the next example demonstrates, the set of Choquet rationalizable actions might
expand under ambiguity aversion as compared to the set of rationalizable actions à la
Bernheim (1984) and Pearce (1984).

Example 2 (Coarsening under Ambiguity Aversion) Consider the game of Exam-
ple 1. When both players are ambiguity neutral (i.e., r = add), it is easy to verify that

Radd,∞
1 = {u, d} and Radd,∞

2 = {l, r}.

This is the case of standard rationalizability à la Bernheim (1984) and Pearce (1984).
For Rowena, u is first-level rationalizable with a probabilistic belief puts probability larger
equal than 1

2
that Colin plays l. Similarly, d is first-level rationalizabile with respect to
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a belief that puts probability larger equal than 1
2

that r is played. However, there is no
probability measure that rationalize choosing m. For Colin, a is first-level rationalizable
with a belief that assigns sufficiently high probability to Rowena’s action u, wheres b is
first-level rationalizable with belief that assigns sufficiently high probability to action d.
The same arguments apply for any level k ≥ 2.

Now suppose that Rowena is ambiguity averse with a convex capacity over {a, b}.
Since convexity contains the additive case, u and d are rationalizable at the first level.
Furthermore, convex capacities rationalize playing m. In particular, for any capacity ν1

such that ν1(a), ν1(b) ∈ [0, 1
2
), actions m is Rowena’s best response. Since the reasoning

repeats at any level k ≥ 2, the set of Choquet rationalizable actions under convexity is

Rconv,∞
1 = {u, d,m} and Rconv,∞

2 = {l, r}.

Battigalli et al. (2016) present a similar example using the smooth ambiguity model.

However, the set of Choquet rationalizable actions under ambiguity love coincides
always with the set of rationalizable actions under additivity.

Proposition 6 For each player i ∈ I, Rconc,∞
i = Radd,∞

i ⊆ Rconv,∞
i .

5.2 Epistemic Characterization

We define the events in the type space that correspond to player’s attitudes towards
ambiguity as motivated by Proposition 5.

Definition 19 Fix a capacity type space 〈(Ti), (τi), (si)〉. The set of player i’s ambiguity
averse (resp. loving) types is, respectively, defined by

[AA]i = {ti ∈ Ti : τi(ti)|A−i is convex }
[AL]i = {ti ∈ Ti : τi(ti)|A−i is concave }.

Remark 5 For any player i ∈ I, [AA]i and [AL]i are measurable in Ti.

Next, we define common belief in Choquet rationality and common belief in an event
E = ∩i∈IEi where for each player i ∈ I, Ei refers to i’s attitude towards ambiguity.

Definition 20 For i ∈ I and k ≥ 1, define inductively,

B1CREi =

{
ti ∈ Ti :

si(ti) is a Choquet best
response to τi(ti)|A−i

}
∩ Ei

Bk+1CREi =
{
ti ∈ BkCREi : ti believes BkCRE−i

}
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The set of player i’s types that satisfy Choquet rationality and common belief in Choquet
rationality and the event E = (Ei)i∈I is

CBCREi =
∞⋂
k=1

BkCREi

where Ei = [AA]i or Ei = [AL]i.

We use acronyms BkCRAA and CBCRAA for k-mutual belief in Choquet rational-
ity, ambiguity aversion, and common belief in Choquet rationality, ambiguity aversion,
respectively. Analogously, we use acronyms BkCRAL and CBCRAL for the “ambiguity
love” counterparts.

The following analysis takes places in the universal capacity type space:

Conjecture 1 For i ∈ I and k = 1, ...,

(i) si(B
kCRAAi) = Rconv,k

i and si(CBCRAAi) = Rconv,∞
i ,

(ii) si(B
kCRALi) = Rconc,k

i and si(CBCRAL) = Rconc,∞
i .

6 Common Belief in “Strict” Ambiguity Attitudes

Both ambiguity aversion or ambiguity love encompass ambiguity neutrality as a special
case. We are also interested in behavior that is rationalizable under genuine “strategic”
ambiguity. Player’s ambiguity attitudes are mute unless they perceive ambiguity. We
say that player i perceives genuine “strategic” ambiguity about her opponents’ strategic
behavior if her beliefs on the algebra of action profiles ΣA−i are non-additive, i.e., there
are, at least, two disjoint sets E,F ⊆ A−i for which νi(E) + νi(F ) 6= νi(E ∪ F ). This
definition makes sense when ambiguity attitudes are assumed.

Remark 6 Given Choquet expected utility preference � w.r.t. to capacity ν, if ν is
convex or concave, then ν satisfies non-additivity if and only if it does not satisfy additive-
separability as stated in Proposition 2.

To explore r-Choquet rationalizability for r = (conv, na) or r = (conc, na), where na
stands for non-additivity, let us consider again the prior example. Clearly, each action
of Rowena is Choquet rationalizable with respect to a convex and non-additive capacity.
That is, R

(conv,na),∞
1 = {u, d,m}, showing that the set of Choquet rationalizable actions

under ambiguity aversion and strategic ambiguity coarser than under rationalizability à
la Bernheim (1984) and Pearce (1984) with probabilistic beliefs.
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Previously we observed that Choquet rationalizability with ambiguity love would not
refine rationalizability (Proposition 6). This changes when we restrict to the set of non-
additive capacities only. The next example demonstrates that Choquet rationalizability
under ambiguity love and strategic ambiguity refines the set of rationalizability actions
à la Bernheim (1984) and Pearce (1984) with probabilistic beliefs.

Example 3 (Refinement under “Strict” Ambiguity Love) Consider the following
game:

u
Rowena d

m

Colin
l r

4, 0 0, 4
0, 4 4, 0
2, 1 2, 1

Rowena’s actions u and d are first-level rationalizable with probabilities that assign a
sufficiently large mass to action l and r, respectively. Moreover, action m is rationalizable
with a uniform probability measure over {l, r}. Thus, when both players are ambiguity
neutral,

Radd,∞
1 = {u,m, d} and Radd,∞

2 = {l, r}.

Now suppose that both players are ambiguity loving with a concave and non-additive ca-
pacity, i.e., r = (conc, na). For Rowena, there is no such a capacity that would rationalize

m at the first level. Thus, R
(conc,na),1
1 = {u, d} and C

(conc,na),1
1 = {ν1 ∈ C(conc,na)({r, l}) |

ν1(r), ν1(l) ∈ (1
2
, 1]}. For Colin, R

(conc,na),1
2 = {r, l} and C

(conc,na),1
2 =

C(conc,na)({u, d,m}). At the second level, R
(conc,na),2
1 = {u, d} and R

(conc,na),2
2 = {l, r}, and

so on. Therefore,

R
(conc,na),∞
1 = {u, d} and R

(conc,na),∞
2 = {l, r}.

The examples demonstrate that Choquet rationalizability with ambiguity aversion
(resp., love) together with strategic ambiguity may yield coarser (resp., finer) sets of
actions than the than under rationalizability à la Bernheim (1984) and Pearce (1984)
with probabilistic beliefs. Yet, this is not generally the case. In particular, the notion of
r-Choquet rationalizability when r = (conv, na) or r = (conc, na) is highly deficient as
the next example demonstrates.

Example 4 (Non-Existence under “Strict” Ambiguity Aversion) The purpose of
this example is to show that Choquet rationalizability with ambiguity aversion and strate-
gic ambiguity may be empty in some games.
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Consider the following game:

u
Rowena d

m

Colin
l r

4, 0 0, 4
0, 4 4, 0
4, 2 4, 1

When both players are ambiguity neutral, then R
(add),∞
1 = {u, d,m} and R

(add),∞
2 = {l, r}.

Now suppose that Rowena is ambiguity averse with respect to a convex and non-
additive capacity on {l, r}. At the first level, there is no capacity in C(conv,na),1

1 ({l, r})
that could rationalize playing u and d, respectively. Thus, R

(conv,na),1
1 = {m}. At

the first level, both Colin’s actions are rationalizable with respect to convex and non-
additive capacities, i.e., R

(conv,na),1
2 = {l, r}. At the second level, R

(conv,na),1
1 = {m} and

C
(conv,na),2
1 = C(conv,na)

1 ({l, r}) for Rowena. However, at the second level, Colin who has a
convex and non-additive capacity can not believe that Rowena is Choquet rational, thus

R
(conv,na),∞
2 = {∅}.

The non-existence example with ambiguity aversion emphasizes that non-existence
is not due to “too much refinement” because as we have seen previously, restricting to
ambiguity aversion leads to a coarsening of rationalizability. Of course, a similar non-
existence example can be presented for the case of ambiguity love and non-additivity.

Example 5 (Non-Existence under “Strict” Ambiguity Love) The purpose of this
example is to show that also Choquet rationalizability with ambiguity love and strategic
ambiguity may be empty in some games.

Consider the following game:

u
Rowena d

m

Colin
l r

4, 1 0, 2
0, 1 4, 2
2, 2 2, 1

Now suppose that Rowena is ambiguity loving with respect to a convex and non-
additive capacity over Colin’s actions {l, r}. At the first level, there is no such a capacity

that would rationalize playing m. Thus, R
(conc,na),1
1 = {u, d} and C

(conc,na),1
1 = {ν ∈

C(conc,na)({l, r}) | ν(a), ν(b) ∈ (1
2
, 1]}. For Colin, R

(conc,na),1
2 = {l, r} and C

(conc,na),1
2 =

C(conc,na)({u, d,m}). At the second level, R
(conc,na),2
1 = {u, d} and C

(conc,na),2
1 = C

(conc,na),1
1 .

For Colin, R
(conc,na),2
2 = {r} for any concave capacity on {u, d}, since r strictly dominates
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l. However, at the third level, Rowena who has a concave and non-additive capacity can
not believe that Colin is Choquet rational, thus leading us to

R
(conc,na),∞
1 = {∅}.

These examples demonstrate that a Choquet expected utility maximizer with non-
additive beliefs may be incapable of believing that her opponents play a “single” action
profile, even though all strategic uncertainty could be eliminated. Therefore, requiring
beliefs to be non-additive at any level of reasoning may be unnatural as it assumes that
strategic ambiguity can never be “resolved” at some level.20

Recall that an event is believed if and only if it is an unambiguous event with the
capacity value of 1 (see Proposition 3). It is thus not surprising that a singleton is
believed if and only of the Choquet expected utility preference is subjective expected
utility preference with respect to a degenerate probability measure. Whenever a singleton
is believed, there is no uncertainty whatsoever.

Corollary 1 Fix a player i ∈ I and let %i her Choquet expected utility preference. Sup-
pose that at some level k, the opponents’ set of rationalizable actions is a singleton set,
i.e., R∞−i = {a−i}. Then, player i believes R∞−i if and only if %i is a subjective expected
utility preference.

Above examples demonstrate that excluding certainty of a singleton is unnatural. As
remedy, we also allow capacities to be Dirac measures. For any player i ∈ I, let D(A−i)
denote the set of all Dirac measures on A−i. Let C((conv,na)∨d)(A−i) = C(conv,na) ∪D(A−i)
and C((conc,na)∨d)(A−i) = C(conc,na)(A−i)∪D(A−i). So players feel either genuine ambiguity
or are certain of just one action profile of opponents.

Now consider r-Choquet rationalizability for r = (conv, na) ∨ d or r = (conc, na) ∨
d. Clearly, non-existence vanishes in Examples 4 and 5 when we consider r-Choquet
rationalizability with either of these two restrictions. Moreover, in Example 3 it still
the case that R

(conv,na)∨d,∞
i is a strict refinement of Radd,∞

i for i = 1, 2. These examples
demonstrate that any of the following subset relations may be strict for some games.

Conjecture 2 For each player i ∈ I, ∅ 6= R
(conc,na)∨d,∞
i ⊆ Radd,∞

i ⊆ R
(conv,na)∨d,∞
i .

6.1 Epistemic Characterization

Formally, strategic ambiguity at the level of type is expressed as follows.

20The problem is somewhat reminiscent of iterated admissibility. Samuelson (1992) pointed out that
while iterated admissibility implicitly models cautious beliefs of players, at higher levels players must
somehow uncautiously believe that others do not play actions that cannot be rationalized with a cau-
tious belief. This sparked a large literature on epistemic characterization of iterated admissibility, see
Brandenburger, Friedenberg, and Keisler (2008) for the seminal paper.
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Definition 21 Type ti faces strategic ambiguity if there are subsets of opponents’ action
profiles that are ambiguous according to ti’s conjecture over A−i. That is, there are
disjoint subsets E,F ⊂ A−i such that τi(ti)|A−i (E) + τi(ti)|A−i (F ) 6= τi(ti)|A−i (E ∪ F ).
The event that player i faces strategic ambiguity is denoted by

[SA]i := {ti ∈ Ti : ti faces strategic ambiguity }.

Note that this definition just requires an ambiguous set of opponents’ action profiles.
Hence, the name “strategic ambiguity”.21

Remark 7 For any player i ∈ I, [SA]i is measurable in Ti.

Strategic certainty at the level of type is expressed as follows.

Definition 22 Type ti is strategically certain if there exists a−i ∈ A−i such that τi(ti)|A−i (a−i) =
δa−i, where δa−i is the Dirac measure on A−i that assigns probability 1 to a−i. The event
that player i faces strategic certainty is denoted by

[SC]i := {ti ∈ Ti : ti faces strategic certainty }.

For i, j ∈ I and k ≥ 1, we use (“strict ambiguity ...”)

BkCRSAAi = BkCREi for Ej = ([AA]j ∩ [SA]j) ∪ [SC]j

BkCRSALi = BkCREi for Ej = ([AL]j ∩ [SA]j) ∪ [SC]j

CBCRSAAi = CBCREi for Ej = ([AA]j ∩ [SA]j) ∪ [SC]j

CBCRSALi = CBCREi for Ej = ([AL]j ∩ [SA]j) ∪ [SC]j

The following analysis takes places in the universal capacity type space:

Conjecture 3 For i ∈ I and k = 1, ...,

(i) si(B
kCRSAAi) = R

(conv,na)∨d,k
i and si(CBCRSAAi) = R

(conv,na)∨d,∞
i ,

(ii) si(B
kCRSALi) = R

(conc,na)∨d,k
i and si(CBCRSALi) = R

(conc,na)∨d,∞
i .

21This terminology is reminiscent of the notion of “strategic assumption” in Heifetz, Meier, and
Schipper (2019) in which only the marginal of the lexicographic belief system on opponents’ actions is
required to have full support but may not have full support with respect to opponents’ types.
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7 Discussion

7.1 Related Literature

A Proofs and Additional Material of Section 2

A.1 Proof of Proposition 1

Adam: Update to new representation used.

We begin with two lemmata on null.

Lemma 6 Fix a null event E ∈ ΣΩ. Then, for all events F,G ∈ ΣΩ, F ⊆ E and G ⊆ Ω,
ν(F ∪G) = ν(G).

Proof. Suppose E ∈ ΣΩ is null. Fix events F,G ∈ ΣΩ, F ⊆ E and G ⊆ Ω. Since
G ⊆ F ∪G, ν(G) ≤ ν(F ∪G). Suppose ν(G) < ν(F ∪G). Let

f(ω) =

{
1 if ω ∈ F ∪ (G ∩ E)
0 otherwise,

g(ω) =

{
1 if ω ∈ G ∩ E
0 otherwise,

and

h(ω) =

{
1 if ω ∈ G ∩ (Ω \ E)
0 otherwise.

Then ∫
Ω

fEh(ω)dν(ω) = ν(F ∪G)

> ν(G) =

∫
Ω

gEh(ω)dν(ω),

contradicting that E is null. �

Lemma 7 Suppose, for all events E,F,G ∈ ΣΩ, F ⊆ E and G ⊆ Ω, ν(F ∪G) = ν(G).
Then E is null.

Proof. Fix a capacity as in the statement of the Lemma. It suffices to show that, for
any acts f, g, h ∈ F , fEh % gEh. Notice∫

Ω

fEh(ω)dν(ω) =

∫
[0,1]

ν ({ω ∈ E : f(ω) ≥ t} ∪ {ω ∈ Ω \ E : h(ω) ≥ t}) dt

=

∫
[0,1]

ν ({ω ∈ Ω \ E : h(ω) ≥ t}) dt,
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where the second line follows from that fact that, for any events F,G ∈ ΣΩ with F ⊆ E,
ν(F ∪G) = ν(G). A similar argument establishes that∫

Ω

gEh(ω)dν(ω) =

∫
[0,1]

ν ({ω ∈ Ω \ E : h(ω) ≥ t}) dt.

So, ∫
Ω

fEh(ω)dν(ω) =

∫
Ω

gEh(ω)dν(ω),

as required. �

We are now ready to prove Proposition 1.

First, fix an event E ∈ ΣΩ that is believed. Then Ω \E is null. Lemma 6 yields that
for all events G,H ∈ ΣΩ, H ⊆ Ω \E and G ⊆ Ω, ν(H ∪G) = ν(G). So, certainly, for all
events G ∈ ΣΩ, G ⊆ E, ν((Ω \ E) ∪G) = ν(G).

Next, suppose that ν((Ω \ E) ∪ F ) = ν(F ) for all events F ∈ ΣΩ, F ⊆ E. It suffices
to show that, for all events G,H ∈ ΣΩ with H ⊆ Ω \ E and G ⊆ Ω,

ν(H ∪G) = ν(G).

If so, then the result is immediate from Lemma 7.

Fix an event G ∈ ΣΩ. Certainly,

ν((Ω \ E) ∪G) = ν((Ω \ E) ∪ (G ∩ E)) = ν(G ∩ E), (12)

where the first equality follows from the fact that G ∩ (Ω \ E) ⊆ Ω \ E and the second
equality follows from taking F = G ∩ E. Now notice that

ν((Ω \ E) ∪G) ≥ ν(G)

≥ ν(G ∩ E)

= ν((Ω \ E) ∪G), (13)

where the first two lines follow from monotonicity and the third line follows from Equa-
tion (12). From Equation (13),

ν(G) = ν(G ∩ E). (14)

Taken together, Equations (12) and (14) establish that, for any event G ⊆ Ω, we must
have

ν((Ω \ E) ∪G) = ν(G). (15)
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Now, fix an event H ∈ ΣΩ with H ⊆ Ω \ E. Then

ν(G) ≤ ν(H ∪G)

≤ ν((Ω \ E) ∪G)

= ν(G), (16)

where the first three lines follow from monotonicity and the last from Equation (15). By
Equation (16)

ν(H ∪G) = ν(G), (17)

as required. �

A.2 Proof of Proposition 2

TBA by Adam

A.3 Examples on Additivity versus Unambiguous Events

Example 6 The purpose of the example is to show that additivity of a capacity w.r.t. to
an event does not imply that the event is perceived unambiguous.

Let Ω = {ω1, ω2, ω3}. Consider the following capacity ν defined by

∅ {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω
ν(·) 0 1

3
1
6

1
3

1 1 2
3

1

The capacity ν is additive on the partition {{ω1}, {ω2, ω3}}. Yet, {ω1} is ambiguous.

ν ({ω1, ω2}) > ν ({ω1, ω2} ∩ {ω1}) + ν ({ω1, ω2} ∩ {ω2, ω3})
ν ({ω1, ω2}) > ν ({ω1}) + ν ({ω2})

1 >
1

3
+

1

6
=

1

2
.

Example 7 This example is to show that if there exists an ambiguous event w.r.t. to a
capacity ν, it does not imply that there exists an event E ∈ FE on which the capacity is
non-additive, i.e., ν(E) + ν(Ω \ E) 6= 1.

Let Ω = {ω1, ω2, ω3} and consider the following capacity ν defined by

∅ {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω
ν(·) 0 1

4
1
4

1
4

3
4

3
4

3
4

1
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Capacity ν is additive on {{ω},Ω\{ω}} for every ω ∈ Ω. Yet, every event is ambiguous.
Consider event {ω1, ω2}:

ν ({ω1, ω2}) > ν ({ω1, ω2} ∩ {ω1}) + ν ({ω1, ω2} ∩ {ω2, ω3})
ν ({ω1, ω2}) > ν ({ω1}) + ν ({ω2})

3

4
>

1

4
+

1

4
=

1

2
.

Proof of Proposition 3

Throughout the proof fix a Choquet expected utility preference % w.r.t. a capacity ν on
ΣΩ.

“(i) =⇒ (iii)”: Let E ∈ ΣΩ be a %-believed event. Thus, it holds true that ν(G) = 0
for all G ⊆ Ω \ E. Suppose, to the contrary, that ν(G) > 0 for some G ⊆ Ω \ E. Then,
by (iii) of Proposition 1, ν(G ∪ {∅}) = ν({∅}) = 0, yielding a contradiction. Thus, for
any F ∈ ΣΩ, ν(F ∩ (Ω \ E)) = 0, and the following holds true:

ν(F ) = ν
(
(F ∩ E) ∪ (F ∩ (Ω \ E))

)
= ν(F ∩ E)

= ν(F ∩ E) + ν(F ∩ (Ω \ E)).

Thus, by Definition 2, event Ω\E is unambiguous event (see Equation (10)) with ν(E) =
0.

“(iii) =⇒ (ii)”: By Equation 10, if Ω \ E is unambiguous, so is event E and thus
ν(E) = 1.

“(ii) =⇒ (i)”: Let E ∈ ΣΩ be an unambiguous event with ν(E) = 1. Take F ⊆ E for
F ∈ ΣΩ. Thus,

ν((Ω \ E) ∪ F ) = ν((Ω \ E) ∪ F ) ∩ E) + ν((Ω \ E) ∪ F ) ∩ (Ω \ E))

= ν(F ) + ν(Ω \ E) = ν(F ).

Thus, by (ii) of Proposition 1, event E is believed. �

A.4 Proof of Proposition 4

Fix a Choquet expected utility preference � w.r.t a capacity ν on Ω.

Necessity: Trivial.

Monotonicity: Fix an event E ∈ FΩ that is �-believed under ν and an event G ∈ FΩ

with E ⊆ G. By Proposition 1 (ii), since E is �-believed under ν,

ν ((Ω \ E) ∪ F ) = ν (F ) for all events F ⊆ Ω.
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Since E ⊆ G, Ω \G ⊆ Ω \ E, so that by monotonicity of ν

ν ((Ω \G) ∪ F ) ≤ ν ((Ω \ E) ∪ F ) for all events F ⊆ Ω.

Again, by monotonicity of ν,

ν ((Ω \G) ∪ F ) = ν (F ) for all events F ⊆ Ω.

Conjunction Part I: Immediate from monotonicity of belief.

Finite Conjunction: Suppose each E1, . . . , En are �-believed under ν.

First notice that
⋃n
i=1 [Ω \ Ei] = Ω \

⋂n
i=1Ei. Certainly, for any i, if ω /∈ Ei then

ω /∈
⋂n
j=1Ej. So,

⋃n
i=1 [Ω \ Ei] ⊆ Ω \

⋂n
i=1Ei. Conversely, if ω /∈

⋂n
j=1Ej then there

must exist some i so that ω /∈ Ei. From this, it follows that Ω \
⋂n
i=1Ei ⊆

⋃n
i=1 [Ω \ Ei].

Now, by Proposition 1 (ii), for each j = 1, . . . , n− 1 and for any event F ,

ν

(
n⋃
i=j

(Ω \ Ei) ∪ F

)
= ν

(
n⋃

i=j+1

(Ω \ Ei) ∪ F

)
,

and
ν ((Ω \ En) ∪ F ) = ν (F ) .

Taken together

ν

((
Ω \

n⋂
i=1

Ei

)
∪ F

)
= ν

(
n⋃
i=1

(Ω \ Ei) ∪ F

)
= ν (F ) ,

as required.

A.5 Counterexample Conjunction

Example 8 The purpose of this example is to show that events E1, E2, . . . may be �-
believed under ν, even though

⋂
iEi is not �-believed under ν.22 (Fix a Choquet expected

utility preference � w.r.t. ν.) Let Ω = [0, 1] endowed with the relative topology. For each
i ≥ 2, define Ei =

[
0, 1

i

]
and set

ν (F ) =

{
1 if there is some i ≥ 2 with Ei ⊆ F
0 otherwise.

First note that each Ei is �-believed. To see this, fix some event Fi ⊆ Ei. Note, if

ν ((Ω \ Ei) ∪ Fi) = 1 then there exists some j with
[
0, 1

j

]
⊆ (Ω \ Ei) ∪ Fi. If j ≤ i then[

0, 1
i

]
⊆
[
0, 1

j

]
so that [

0,
1

i

]
⊆
[
0,

1

j

]
⊆ (Ω \

[
0,

1

i

]
) ∪ Fi

22The example is due to Amanda Friedenberg.
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or
[
0, 1

i

]
⊆ Fi. From this, ν (Fi) = 1, as required. If i < j then

[
0, 1

j

]
⊆
[
0, 1

i

]
. Using this

and the fact that
[
0, 1

j

]
⊆
(
Ω \

[
0, 1

i

])
∪ Fi, it follows that

[
0, 1

j

]
⊆ Fi and so ν (Fi) = 1,

as required. If ν ((Ω \ Ei) ∪ Fi) = 0 certainly ν (Fi) = 0.

Also notice that ∩∞i=2Ei is not �-believed, since

ν ((Ω \ ∩∞i=2Ei) ∪ ∩∞i=2Ei) = 1

> 0 = ν (∩∞i=2Ei) .

A.6 Proof of Lemma 4

First notice that Ω \
⋂∞
n=1En =

⋃∞
n=1 (Ω \ En). To see this, first notice that if ω ∈

Ω \
⋂∞
n=1En then there exists some n with ω ∈ Ω \ En. This establishes that ω ∈⋃∞

n=1 (Ω \ En). Conversely, suppose there exists some n with ω ∈ Ω \En. Then certainly
ω /∈

⋂∞
n=1En, establishing that ω ∈ Ω \

⋂∞
n=1 En.

Fix an event F ⊆
⋂∞
n=1En. Define Gn = (Ω \ En)∪F and note that Gn ⊆ Gn+1 since

En+1 ⊆ En. Since, for each n, En is �-believed and F ⊆
⋂∞
n=1En ⊆ En, ν (Gn) = ν (F ).

It follows that limn→∞ ν (Gn) = ν (F ). Now, since ν is lower continuous,

ν (F ) = lim
n→∞

ν (Gn)

= ν

(
∞⋃
n=1

Gn

)

= ν

((
Ω \

∞⋂
n=1

En

)
∪ F

)
,

as required.

A.7 Counterexample of Conjunction for Regular Capacities

The purpose of this section is to demonstrate that replacing lower continuity with regu-
larity may let conjunction fail.23 We make use of Example 8 and show that it features a
‘nice’ capacity, as it satisfies a regularity condition:

Definition 23 A capacity ν is regular if

1. for each event E, ν (E) = sup{ν (C) : C ⊆ E and C closed}

2. for each closed set C, ν (C) = inf{ν (U) : C ⊆ U and U open}.
23The example and arguments are due to Amanda Friedenberg.
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Claim 1 The capacity in Example 8 is a regular capacity.

First we will show property 1, i.e. for any event F ⊆ Ω, ν (F ) = sup{ν (C) : C ⊆ F
and C closed}. Fix an event F with ν (F ) = 1. Then there exists some closed Ei = [0, 1

i
]

with Ei ⊆ F , i.e. ν (F ) = ν (Ei) = 1 for Ei ⊆ F closed. If ν (F ) = 0, then for any
closed C ⊆ F (and there must be some) we have ν (C) = 0 = ν (F ) establishing the
requirement.

Next will will show property 2, i.e. for any closed C ⊆ Ω, ν (C) = inf{ν (U) : C ⊆ U
and U open}. Fix a closed set C. First suppose that ν (C) = 1 and note that for any
open U with C ⊆ U we must have that ν (U) = 1 establishing the requirement.

Now suppose that ν (C) = 0. We must only show that there is some open U with
ν (U) = 0 and C ⊆ U .

Since ν (C) = 0, for each i,
[
0, 1

i

]
∩ ([0, 1] \ C) 6= ∅. For each i, fix exactly one

di ∈
[
0, 1

i

]
∩ ([0, 1] \ C) and let D be the set of d1, d2, . . .. Note, that D is closed. To

show this, we will show that D contains its accumulation points. Specifically, we will
show that if x ∈ [0, 1] \D then there exists an open interval around x whose intersection
with D is empty. Without loss of generality, assume d1 < x < d2 and, for each i, either
di ≤ d1 or d2 ≤ di. Then, for x − d1 > ε > d2 − x, (x− ε, x+ ε) satisfies the said
conditions.

Given that C and D are closed in [0, 1] they are compact. It follows from Kelly
(Theorem 5.9) that there exists disjoint open sets U, V with C ⊆ U and D ⊆ V . For
each i, there is then some di ∈ V and (since U and V are disjoint) di /∈ U . It follows that
ν (U) = 0 as required.

A.8 Relationship between Belief and Support Notions

Adam, update to new representation

There are a few known support notions suggested in the context of game theory. In
their seminal paper, Dow and Werlang (1994) introduce the following support notion.

Definition 24 Let be capacity ν. A event E ∈ ΣΩ is called a DW-support of ν if,

(i) ν(Ω \ E) = 0, and
(ii) ν(Ω \ F ) > 0 for any event F ⊂ E.

A DW-support always exists, but it might be non-unique. Denote by DW(ν) the set of
DW supports associated with ν.

Another support notion has been suggested by Marinacci (2000).

Definition 25 Let be capacity ν. The M-support of ν is defined to be

M := {ω ∈ Ω | ν(ω) > 0}.
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The Marinacci-support may be an empty set. However, if it exists, it is always unique.

For a given capacity ν, let M be the M-suppport, D a DW-support (i.e., D ∈ DW(ν))
and E the believed event. Then, one has:

∅ ⊆M ⊆ D ⊆ E ⊆ Ω. (18)

It is also known that the DW-support is unique if and only if it is the Marinacci-support
(see Eichberger and Kelsey 2014). In this case,

∅ 6= M = D ⊆ E ⊆ Ω. (19)

The example below shows that the unique DW-support does not need to be believed.

Example 9 Let Ω = {ω1, ω2, ω3}. Consider the following capacity ν on 2Ω: ν(ω1) =
ν(ω2) = ν(ω1, ω2) = 0, ν(ω3) = ν(ω1, ω3) = 1

2
and ν(ω2, ω3) = 1. Hence, {ω2, ω3} is

believed. Yet, {ω3} is the unique DW-support and thus it is also the Marinacci-support.

Also, a DW-support with the capacity value equal to 1 does not need to be believed.

Example 10 Let Ω = {ω1, ω2, ω3}. Consider the following capacity ν on 2Ω: ν(ω1) =
ν(ω2) = 0, ν(ω3) = 1

3
and ν(ω1, ω2) = ν(ω1, ω3) = ν(ω2, ω3) = 1. Now, {ω3} is the

M-support while {ω1, ω3} and {ω2, ω3} but not Ω are the DW-supports. However, the
believed event is Ω.

One has the following relationship.

Lemma 8 Let M ∈ ΣΩ be the Marinacci-support of a capacity ν, provided it exists.
Then, M is believed if, and only if, M is the (unique) unambiguous DW-support.

Proof. (Sketch) “=⇒” Suppose M is believed. By Lemma 2, M is an unambiguous
event and ν(Ω \M) = 0. Now, take a proper subset F ⊂ M . Since M is believed, one
has ν(Ω\F ) = ν((M \F )∪ (Ω\M)) = ν(M \F ). Since M is the M-support, there exists
ω ∈M \F with ν(ω) > 0. By monotonicity, ν(M \F ) > 0 . Hence, M is a DW-support.
In fact, M is the unique DW-support. Suppose it is not. Then, there exists another
DW-support, D, which is not the M-support. Hence, there exists ω ∈ D with ν(ω) = 0,
i.e., ω ∈ Ω \M . Let F := D \ {s}. Since ν(Ω \ D) = 0 and D is unambiguous, one
has ν(Ω \ F ) = ν({ω} ∪ (Ω \ D)) = ν({ω}) + ν(Ω \ D)) = 0, contradicting that D is a
DW-support. Thus, M is the unique unambiguous DW-support.

“⇐=” LetD be the unique unambiguous DW support. By uniqueness and Proposition
(*) in Eichberger and Kelsey (2014), D is the M-support. By Lemma 2 and ν(Ω\D) = 0,
D is believed.
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B Proofs of Section 3

B.1 Proof of Remark ??

Suppose by contradiction that there exists ai ∈ Rk+1
i with ai /∈ Rk

i . The fact that
ai ∈ Rk+1

i is equivalent to saying that there exists a capacity νi ∈ Ck+1
i for which ai is

a Choquet best response among all actions in Ai. The fact that ai /∈ Rk
i is equivalent

to saying that there does not exist a capacity ν ′i ∈ Ck
i for which ai is a Choquet best

response among all actions in Ai. By definition, Ck+1
i ⊆ Ck

i for all i ∈ I, a contradiction.

B.2 Proof of Theorem ??

Fix a finite game in strategic form. Since the game is finite and the procedure is monotone
in the sense of Remark ??, there must exist an integer k̄ such that for all k ≥ k̄, Rk

i = Rk̄
i

for all i ∈ I. For any player i ∈ I and any νi ∈ C(A−i) there exists a Choquet best
response. Thus, Rk̄

i 6= ∅ for all i ∈ I. Again, by Remark ??, R∞i = Rk̄
i 6= ∅ for all i ∈ I.

B.3 Proof of Remark 1

Consider ai ∈ Ri. By definition, there exist a capacity νaii ∈ C(A−i) such that νaii ((A−i \
R−i) ∪ F ) = νaii (F ) for all F ⊆ R−i. That is, R−i is believed with νaii . Since R−i ⊆
R−i∪R̃−i, monotonicity of belief (see Proposition 4) implies that also R−i∪R̃−i is believed
with νaii . Note that this holds for any action in Ri∪R̃i. Thus, for any a′i ∈ Ri∪R̃i there is

a capacity ν
a′i
i ∈ C(A−i) with ν

a′i
i ((A−i \ (R−i∪ R̃−i))∪F ) = ν

a′i
i (F ) for all F ⊆ R−i∪ R̃−i

such that a′i is a Choquet best response with ν
a′i
i . Finally note that this holds for all

i ∈ I. Hence, Ri = R̃i for all i ∈ I since otherwise Ri and R̃i cannot be largest sets
satisfying the property of Definition 6.

B.4 Proof of Theorem 2

R∞i ⊆ Ri is immediate from definitions. We prove the converse by induction.

For any player i ∈ I, ai ∈ Ri implies that ai is a Choquet best response with respect
to νaii ∈ C(A−i) satisfying νaii ((A−i \ R−i) ∪ F ) = νaii (F ) for all F ⊆ R−i. This implies
that νaii ∈ C1

i . Since this holds for all actions in Ri, we have Ri ⊆ R1
i .

Induction hypothesis: Ri ⊆ R`
i for all i ∈ I, ` ≤ k.

Induction step: We need to show Ri ⊆ Rk+1
i for all i ∈ I. For any i ∈ I and any

ai ∈ R−i there exists νaii such that R−i is believed and ai is a Choquet best response
to νaii . By the induction hypothesis and monotonicity of beliefs (Appendix 4) νaii also
believes Rk

−i. Thus, νaii ∈ Ck+1
i . Thus, ai ∈ Rk+1

i .
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From Remark ?? and arguments in the proof of Theorem ?? follows that Ri = R∞i
for all i ∈ I.

B.5 Proof of Remark 2

We prove by induction. Clearly, for all i ∈ I, U1
i (A) ⊆ U0

i (A).

Assume now for k ≥ 1, Uk
i (A) ⊆ Uk−1

i (A) for all i ∈ I. Suppose by contradiction
that for k ≥ 1, A′i ∈ Uk+1

i (A) and A′i /∈ Uk
i (A).

A′i ∈ Uk+1
i (A) means that for all ai ∈ A′i there is no αi ∈ ∆(Uk

i (A) ∩ A◦i ) such that
ũi(αi, A

′
−i) > ũi({ai}, A′−i) for all A′−i ∈ Uk

−i(A).

A′i /∈ Uk
i (A) means that there exist ai ∈ A′i and αi ∈ ∆(Uk−1

i (A) ∩ A◦i ) such that
ũi(αi, A

′
−i) > ũi({ai}, A′−i) for all A′−i ∈ Uk−1

−i (A). Since by the induction hypothesis,
Uk
i (A) ⊆ Uk−1

i (A) for all i ∈ I, former statement also holds for all A′−i ∈ Uk
−i(A).

Thus, if ai ∈ A′i for which there exists αi ∈ ∆(Uk−1
i (A)∩A◦i ) such that ũi(αi, A

′
−i) >

ũi({ai}, A′−i) for all A′−i ∈ Uk
−i(A), then αi({a′i}) > 0 for some {a′i} ∈ (Uk−1

i (A) \
Uk
i (A)) ∩ A◦i . But any such action {a′i} is strictly dominated at level k. Thus, we can

improve the expected payoff of player i by shifting probability mass away from {a′i} to
actions in Uk

i (A) ∩ A◦i . For the resulting mixed action, let’s denote it by α′i, we have
α′i ∈ ∆(Uk

i (A) ∩ A◦i ) such that ũi(α
′
i, A

′
−i) > ũi({ai}, A′−i) for all A′−i ∈ Uk

−i(A), a
contradiction to A′i ∈ Uk+1

i (A).

B.6 Proof of Theorem 3

We prove by induction. For any i ∈ I, let R0
i = Ai. Then R0

i = A0
i for all i ∈ I. Assume

now that for k ≥ 0, Rk
i = Aki for all i ∈ I. We need to show that Rk+1

i = Ak+1
i for all

i ∈ I.

By Remark 3, ai ∈ Ak+1
i if and only if {ai} ∈ Uk+1

i (A) for any i ∈ I. Note that by
definition Uk(A) is an extended restriction (of every player). Further Rk

i = Aki if and only
if Uk

i (A) = 2R
k
i \{∅} for i ∈ I. Thus, Uk(A) is an extended restriction in the extend game

associated with the restriction Rk in the underlying game. Now from Lemma 5 follows
that ai is a Choquet best response given restriction Rk if and only if {ai} is not strictly
dominated in the associated extended restriction Uk+1(A). Hence for i ∈ I, ai ∈ Rk+1

i if
and only if {ai} ∈ Uk+1

i (A) if and only if (by Remark 3) ai ∈ Ak+1
i .

B.7 Proof of Theorem 5

For any player i ∈ I and k = 0, simply define R0
i = Ai.

We prove by induction.
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For any ai ∈ R1
i there exists νi ∈ C1

i for which ai is a Choquet best response. Let
�i be the Choquet expected utility preference relation on FAi w.r.t. νi. Then R0

−i is
�i-believed. This follows simply from R0

−i = A−i. Moreover, fai �i g for all g ∈ FAi .
Let CEUi ∈ Rui(A−i | E0

−i) = Rui(A−i | A−i) = Rui(A−i) such that CEUi represents �i
with νi and ui. Then ai ∈ E1

i .

Conversely, for any ai ∈ E1
i , there exist a Choquet expected utility function CEUi

such that CEUi ∈ Rui(A−i | E0
−i) = Rui(A−i) and CEUi(f

ai) ≥ CEUi(g) for all g ∈ FAi .
Let νi be the capacity uniquely associated with CEUi. Then νi ∈ C1

i . Moreover, ai is a
Choquet best response w.r.t. νi. Thus, ai ∈ R1

i .

Induction hypothesis: R`
i = E`

i for all i ∈ I and ` ≤ k ≥ 1.

Induction step: We need to show that Rk+1
i = Ek+1

i for any i ∈ I.

For any ai ∈ Rk+1
i there exists νi ∈ Ck+1

i for which ai is a Choquet best response.
Let �i be the Choquet expected utility preference relation on FAi w.r.t. νi. Then Rk

−i
is �i-believed. This follows from νi ∈ Ck+1

i . Moreover, fai �i g for all g ∈ FAi . Let
CEUi ∈ Rui(A−i | Ek

−i) such that CEUi represents �i with νi and ui. Such CEUi exists
in Rui(A−i | Ek

−i) because by the induction hypothesis Rui(A−i | Ek
−i) = Rui(A−i | Rk

−i).
Then ai ∈ Ek+1

i .

Conversely, for any ai ∈ Ek+1
i , there exist a Choquet expected utility function CEUi

such that CEUi ∈ Rui(A−i | Ek
−i). By the induction hypothesis Rui(A−i | Ek

−i) =
Rui(A−i | Rk

−i). Let νi be the capacity uniquely associated with CEUi. Then νi ∈ Ck+1
i .

Moreover, ai is a Choquet best response against νi because CEUi(f
ai) ≥ CEUi(g) for all

g ∈ FAi . Thus, ai ∈ Rk+1
i .

Since we have shown it for any finite k ≥ 1 and we consider games with finite actions
only, we also have E∞i = R∞i .

C The Impossibility of Beliefs-Complete Structures

with General Capacities

Theorem 7 Let Ω be a space and C(Ω) be the set of capacities on (Ω, 2Ω). If |Ω| > 1,
then there exists no surjection t : Ω −→ C(Ω).

Proof. Define for each A ∈ 2Ω a capacity

νA(B) :=

{
1 if B ∈ 2Ω \ {∅} s.t. B ⊇ A
0 otherwise.

It is easily verified that indeed νA is a capacity for each A ∈ 2Ω. Denote by I(S) the set
of such capacities.

Note that there exists a bijection b : 2Ω −→ I(Ω) defined by b(A) = νA for A ∈ 2Ω.
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Suppose to the contrary that there exists a surjection t : Ω −→ C(Ω). Since I(Ω) ⊆
C(Ω), there must be also a surjection k : Ω −→ I(Ω). Since b is a bijection, b is
invertible. Hence, the composition b−1 ◦ k : Ω −→ 2Ω is defined and is a surjection. But
this contradicts Cantor’s Theorem according to which there is no surjection between the
space Ω and 2Ω if |Ω| > 1. �

D Universal Type Space

To do: Update Chateauneuf to Köbberling and Wakker.

D.1 Universal CEU-Representation Type Space

We apply universal representation type spaces of Ganguli, Heifetz, and Lee (2016) to
games in strategic form with Choquet expected utility. First, we verify that Choquet
expected representation type spaces satisfy the properties sufficient for the existence of
the universal Choquet expected utility representation type space. The theory of Ganguli,
Heifetz, and Lee (2016) applies to monotone continuous representations on measurable
spaces.

Definition 26 (Monotone continuous representation) A preference relation � on
F(Ω) admits a monotone continuous representation if there exists a function V : F(Ω) −→
R such that

1. Representation: For any f, g ∈ F(Ω), f � g if and only if V (f) ≥ V (g).

2. Representation continuity: For any sequence of acts {fn}n≥1, fn ∈ F(Ω) for all n
and f ∈ F(Ω), we have that for all ω ∈ Ω, fn(ω) → f(ω) implies that V (fn) →
V (f).

3. Representation monotonicity: For f, g ∈ F(Ω) we have that f ≥ g implies V (f) ≥
V (g).

Lemma 9 Let � be a preference relation on F(Ω) that admits a Choquet expected utility
representation with a continuous capacity ν. Denote it by CEU(f) =

∫
Ω
fdν for f ∈

F(Ω). Then CEU is a monotone continuous representation.

Proof. A representation theorem of Choquet expected utility applicable to our setting
(i.e., measurable state-spaces and measurable real-valued acts) is due to Chateauneuf
(1994).24 Moreover, it is well known that the Choquet integral satisfies representation

24The representation theorem does not yield a continuous capacity. An additional axiom yielding
continuous capacities is necessarily technical in nature and does not add to decision theory at a conceptual
level. That’s why we assume continuous capacities on top of representation.
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monotonicity (e.g., Marinacci and Montrucchio, 2004, Proposition 4.11). What is left to
show is that it satisfies representation continuity. Representation continuity follows from
the bounded convergence lemma below that is essentially a Corollary of Denneberg’s
(1994, Theorem 8.1) monotone convergence theorem. It makes use of continuous capac-
ities. �

Lemma 10 (Bounded convergence) Let ν be a continuous capacity on a measurable
space (Ω,ΣΩ). Let {fn} be a sequence of nonnegative real-valued measurable bounded func-
tions converging pointwise to f , for all ω ∈ Ω, fn(ω) → f(ω). Then limn→∞

∫
Ω
fndν =∫

Ω
fdν.

Proof. Define two sequences of functions {gn} and {hn} by

gn(ω) := sup{fm(ω) : m ≥ n}

and
hn(ω) := inf{fm(ω) : m ≥ n}.

Since {fn} is a sequence of bounded functions, each function in the sequences {gn} and
{hn} are well-defined. The functions defined pointwise either by the supremum and the
infimum of a sequence of measurable functions are measurable functions (e.g., Aliprantis
and Border, 2007, Theorem 4.27). By construction, {gn} is an monotone decreasing
sequence of non-negative functions and {hn} is a monotone increasing sequence of non-
negative functions. Also by construction limn→∞ hn = f and limn→∞ gn = f and since it
is well-defined f and measurable (e.g., Aliprantis and Border, 2007, Theorem 4.27). Since
the Choquet integral satisfies monotone representation (e.g., Marinacci and Montrucchio,
2004, Proposition 4.11) we have for each n,∫

Ω

hndν ≤
∫

Ω

fndν ≤
∫

Ω

gndν.

Since ν is continuous, it is continuous from above and below. By the monotone
convergence theorem for continuous capacities (Denneberg, 1994, Theorem 8.1),∫

Ω

gndν →
∫

Ω

fdν

and ∫
Ω

hndν →
∫

Ω

fdν

where former follows from ν being continuous from above and latter follows from ν being
continuous from below. Then it follows that

∫
Ω
fndν →

∫
Ω
fdν. �
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For any measurable space Ω, let R(Ω) be the set of Choquet expected utility repre-
sentations of preferences over acts in FΩ w.r.t. to a continuous capacity. Let R(Ω) be
equipped with the σ-algebra generated by sets of the form

[f w g] := {CEU ∈ R(Ω) : CEU(f) ≥ CEU(g)}

for all f, g ∈ F(Ω).

Let R be the Choquet expected utility representation class, i.e., R := {R(Ω) :
Ω being a measurable space}.

The next notion central to the construction of a universal representation type space in
Ganguli, Heifetz, and Lee (2016) is image-regularity. Applied to our context of Choquet
expected utility, the definition of image-regular representation class reads as follows:

Definition 27 (Image-regular representation class) The Choquet expected utility rep-
resentation class R is image-regular if for any measurable spaces Y and Z and any mea-
surable function φ : Y −→ Z, the map φ̌ : R(Y ) −→ R(Z) given by for all CEU ∈ R(Y )
and all f ∈ F(Z), φ̌(CEU)(f) = CEU(f ◦ φ) is well-defined.

The next steps are to verify that our context of Choquet expected utility yields indeed
an image-regular representation class.

Consider any two measurable spaces Y and Z with a measurable function φ : Y −→ Z.
For any measurable real-valued act f ∈ FZ , the composite map f ◦φ is measurable (since
both maps are measurable) and measurable real-valued act in FY . Let CEU�Y ∈ R(Y )
be the Choquet expected utility representation of preference relation �Y (Chateauneuf,
1994). Again, by Chateauneuf’s (1994) representation theorem, we have for any f, g ∈
FZ , CEU�Y (f ◦ φ) ≥ CEU�Y (g ◦ φ) if and only if f ◦ φ �Y g ◦ φ.

Define �Z on acts FZ by for all f, g ∈ FZ f �Z g if and only if f ◦ φ �Y g ◦ φ.
Note that �Z satisfies axioms of Choquet expected utility theory because �Y does.
Hence by Chateauneuf (1994), there exist a Choquet expected utility representation
CEU�Z ∈ R(Z) that represents �Z such that CEU�Z (f) ≥ CEU�Z (g) if and only if
f �Z g.

Now let φ̌ : R(Y ) −→ R(Z) be defined by for all CEU�Y ∈ R(Y ), φ̌(CEU�Y ) =
CEU�Z .

We observe that φ̌ is well-defined:

Remark 8 For any act f ∈ FZ and t ∈ R, the set {z ∈ Z : f(z) ≥ t} is ΣZ-measurable.

Proof. This follows immediately from f being a ΣZ-measurable function. �

Remark 9 For any act f ∈ FZ, t ∈ R, and measurable function φ : Y −→ Z, the set
{y ∈ Y : f(φ(y)) ≥ t} is ΣY -measurable.
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Proof. The composition of measurable functions is measurable. The observation is
now immediate from observing that both f and φ are measurable functions. �

Remark 10 For any act f ∈ FZ, t ∈ R, and measurable function φ : Y −→ Z, the set
φ−1({z ∈ Z : f(z) ≥ t}) is ΣY -measurable.

Proof. This follows immediately from f being ΣZ-measurable and φ being a measur-
able function. �

Remark 11 For any act f ∈ FZ, t ∈ R, and measurable function φ : Y −→ Z, we have
φ−1({z ∈ Z : f(z) ≥ t}) = {y ∈ Y : f(φ(y)) ≥ t}.

Proof. y ∈ φ−1({z′ ∈ Z : f(z′) ≥ t}) if and only if there is a z ∈ Z such that φ(y) = z
with f(z) ≥ t if and only if f(φ(y)) ≥ t if and only if y ∈ {y′ ∈ Y : f(φ(y′)) ≥ t}. �

For any f ∈ FZ

CEU�Z (f) =

∫
Z

f(z)dν�Z (z) =

∫ 1

0

ν�Z ({z ∈ Z : f(z) ≥ t})dt

CEU�Y (f ◦ φ) =

∫
Y

f(φ(y))dν�Y (y) =

∫ 1

0

ν�Y ({y ∈ Y : f(φ(y)) ≥ t})dt

where ν�Z is the capacity associated with �Z and ν�Y is the capacity associated with
�Y . By Chateauneuf (1994) these capacities are unique, respectively.

For any event E ∈ ΣZ , set ν�Z (E) ≡ ν�Y (φ−1(E)). We verify:

Lemma 11 ν�Z is a continuous capacity on Z.

Proof. Normalization: Consider first the case E = Z. Then φ−1(Z) = Y . Thus
ν�Z (Z) = ν�Y (φ−1(Z)) = ν�Y (Y ) = 1.

Second, consider E = ∅. We have φ−1(∅) = ∅. (I.e., there does not exist y ∈ Y such
that φ(y) ∈ ∅.) Thus ν�Z (∅) = ν�Y (φ−1(∅)) = ν�Y (∅) = 0.

Monotonicity: Let E,F ∈ ΣZ . If E ⊆ F then φ−1(E) ⊆ φ−1(F ). (I.e., if E ⊆ F , then
for all y ∈ Y such that φ(y) ∈ E we also must have φ(y) ∈ F .) By the monotonicity
of ν�Y , φ−1(E) ⊆ φ−1(F ) implies ν�Y (φ−1(E)) ≤ ν�Y (φ−1(F )). By definition of ν�Z we
have ν�Z (E) ≤ ν�Z (F ).

Continuity: We need to show that for any increasing (resp. decreasing) sequence of
measurable sets {En}, En ∈ ΣZ for n = 1, 2, ..., with E1 ⊆ E2 ⊆ ... (resp. E1 ⊇ E2 ⊇ ...)
and

⋃
nEn = E (resp.

⋂
nEn = E), we have limn→∞ ν�Z (En) = ν�Z (E).

Let {En} be such that En ∈ ΣZ for n = 1, 2, ..., with E1 ⊆ E2 ⊆ ... and
⋃
nEn = E.

Then by the same arguments as used in the proof of monotonicity, we have φ−1(E1) ⊆
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φ−1(E2) ⊆ .... Since φ is measurable, we have φ−1(En) ∈ ΣY for n = 1, 2, .... Moreover,⋃
nEn = E implies φ−1 (

⋃
nEn) = φ−1(E).

Claim:
⋃
n φ
−1(En) = φ−1 (

⋃
nEn). First, we prove “⊆”. y ∈

⋃
n φ
−1(En) implies

that there exist m ∈ {1, 2, ...} such that y ∈ φ−1(Em). Em ⊆
⋃
nEn. By the same

arguments as used in the proof of monotonicity, we have φ−1(Em) ⊆ φ−1 (
⋃
nEn). Hence

y ∈ φ−1 (
⋃
nEn). Next, we prove “⊇”. y ∈ φ−1 (

⋃
nEn). There exists z ∈

⋃
nEn such

that φ(y) = z. There exists m ∈ {1, 2, ...} such that z ∈ Em. It follows that y ∈ φ−1(Em).
Hence y ∈

⋃
n φ
−1(En).

We conclude
⋃
n φ
−1(En) = φ−1(E). Thus limn→∞ ν�Z (En) = limn→ ν�Y (φ−1(En)) =

ν�Y (φ1(E)) = ν�Z (E), where the equality in the middle follows from continuity of ν�Y .

Finally, let {En} be such that En ∈ ΣZ for n = 1, 2, ..., with E1 ⊇ E2 ⊇ ... and⋂
nEn = E. Then by the same arguments as used in the proof of monotonicity, we have

φ−1(E1) ⊇ φ−1(E2) ⊇ ... Moreover,
⋂
nEn = E implies φ−1 (

⋂
nEn) = φ−1(E).

Claim:
⋂
n φ
−1(En) = φ−1 (

⋂
nEn). Note y ∈

⋂
n φ
−1(En) if and only if y ∈ φ−1(En)

for all n = 1, 2, ... if and only if there exists z ∈ Z such that φ(y) = z and z ∈ En for all
n = 1, 2, ... if and only if z ∈

⋂
nEn if and only if y ∈ φ−1 (

⋂
nEn).

We conclude
⋂
n φ
−1(En) = φ−1(E). Thus limn→∞ ν�Z (En) = limn→ ν�Y (φ−1(En)) =

ν�Y (φ1(E)) = ν�Z (E), where the equality in the middle follows from continuity of ν�Y .
�

It follows now that for any f ∈ FZ ,

CEU�Y (f ◦ φ) =

∫ 1

0

ν�Y ({y ∈ Y : f(φ(y)) ≥ t})dt

=

∫ 1

0

ν�Y (φ−1({z ∈ Z : f(z) ≥ t}))dt

=

∫ 1

0

ν�Z ({z ∈ Z : f(z) ≥ t})dt

= φ̌(CEU�Y )(f)

where the second equality follows from Remark 11 and the third equality follows from
the definition of ν�Z . We finally conclude:

Lemma 12 For any measurable function φ : Y −→ Z, the function φ̌ : R(Y ) −→ R(Z)
constructed above is well-defined.

Corollary 2 The class of Choquet expected utility representations is image-regular.

Definition 28 A Choquet expected utility representation type space is a tuple 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉
such that for each i ∈ I,
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1. Ti is a measurable space

2. mi : Ti −→ R(T−i) is measurable.

3. si : Ti −→ Ai is measurable

That is, in a Choquet expected utility representation type space each type of a player
is associated with a Choquet expected utility representation (with a given Bernoulli
utility function) and an action.

Fix a game in strategic form 〈I, (Ai)i∈I , (ui)i∈i〉. Recall that for each player i ∈ I and
each action ai ∈ Ai, we associate the act fai ∈ F(A−i) defined by

fai(a−i) = ui(ai, a−i).

Analogously, given a Choquet expected utility representation type space 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉
we can associate to each action ai ∈ Ai the act fai ∈ F(T−i) defined by

fai(t−i) = ui(ai, s−i(t−i)).

Given a game in strategic form 〈I, (Ai)i∈I , (ui)i∈i〉 and a Choquet expected utility
representation type space 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉 we have for every i ∈ I, ai ∈ Ai, and
ti ∈ Ti,

mi(ti)(ui(ai, s−i(·))) =

∫
T−i

ui(ai, s−i(t−i))dν(t−i),

the Choquet integral. When no confusion arises, we abuse notation and write mi(ti)(ai)
for mi(ti)(ui(ai, s−i(·))).

For any ai, a
′
i ∈ Ai, let

[ai w a′i]
i := {ti ∈ Ti : mi(ti)(ai) ≥ mi(ti)(a

′
i)}.

Rewrite with slight abuse of notation our earlier definition (see page 45)

[ai w a′i] = {CEU ∈ R(T−i) : CEU(fai) ≥ CEU(fa
′
i)}.

We have
[ai w a′i]

i = m−1
i ([ai w a′i]).

Definition 29 Given two Choquet expected utility representation type spaces 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉
and 〈(T ′i )i∈I , (m′i)i∈I , (s′i)i∈I〉, a type morphism is a function φ = (φi)i∈I : T −→ T ′ such
that for each i ∈ I,

1. φi : Ti −→ T ′i is measurable,
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2. for each ti ∈ Ti, m′i(φi(ti)) = φ̌i(mi(ti)), i.e., for every ai ∈ Ai,

m′i(φi(ti))(ui(ai, s
′
−i(·))) = mi(ti)(ui(ai, s

′
−i(φ−i(·)))).

3. s′i ◦ φi = si.

Type morphisms are interpreted as mappings that preserve the Choquet expected
utility representation structure.

Definition 30 A Choquet expected utility representation type space 〈(T ∗i )i∈I , (m
∗
i )i∈I , (s

∗
i )i∈I〉

is universal if for every Choquet expected utility representation type space 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉
there exists a unique type morphism from 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉 to 〈(T ∗i )i∈I , (m

∗
i )i∈I , (s

∗
i )i∈I〉.

In other words, the universal Choquet expected utility representation type space is
the terminal object in the category of Choquet expected utility representation type spaces
(that has Choquet expected utility representation type spaces as objects and type mor-
phisms as morphisms).

Hierarchical Construction: For each player i ∈ I, define inductively

H0
i = Ai

and for k ≥ 1

Hk+1
i = Hk

i ×R(Hk
−i) = H0

i ×
(
×k`=0R(H`

−i)
)
.

The space of i-hierarchies is

Hi = H0
i ×

(
×∞`=0R(H`

−i)
)

Denote by ρki : Hi −→ Hk
i the projection maps for k ≥ 0 and i ∈ I.

Given a Choquet expected utility representation type space 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉,
define for each i ∈ I an i-description map hi : Ti −→ Hi as follows: h0

i : Ti −→ H0
i is

uniquely defined by h0
i = si. Inductively, for k ≥ 1 define hk+1

i : Ti −→ Hk+1
i by

hk+1
i (ti) =

(
hki (ti), ȟ

k
−i(mi(ti))

)
=
(
si(ti), ȟ

0
−i(mi(ti)), ..., ȟ

k
−i(mi(ti))

)
, where ȟki :

R(T−i) −→ R(Hk
−i) is the mapping between representations defined above.

Define hi : Ti −→ Hi as the unique function that satisfies for all k ≥ 0 hki = ρki (hi),
i.e.,

hi(ti) =
(
si(ti), ȟ

0
−i(mi(ti)), ..., ȟ

k
−i(mi(ti)), ...

)
.

Proposition 7 Type morphisms preserve i-descriptions.

This is a variant/special case of a result in Ganguli, Heifetz, and Lee (2016). We
include the proof for completeness. It specializes the proof of Ganguli, Heifetz, and
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Lee (2016) to Choquet expected representation type spaces. Moreover, it modifies it in
order to model uncertainty about opponents’ actions rather than some abstract parame-
ter space that in Ganguli, Heifetz, and Lee (2016) is assumed to be common to all players.

Proof of Proposition 7. Let φ : T −→ T ′ be a type morphism. We have to show
that h′i(φi(ti)) = hi(ti). We prove by induction:

Base case: For any i ∈ I, h0
i (ti) = si(ti) = s′i(φi(ti)) = h

′0
i (φi(ti)) follows directly from

φ being a type morphism.

Inductive hypothesis: hki (ti) = h
′k
i (φi(ti)) for every ti ∈ Ti and i ∈ I.

Induction step: We want to show that hk+1
i (ti) = h

′k+1
i (φi(ti)) for every ti ∈ Ti and

i ∈ I.

For any ai ∈ Ai,

ȟ
′k
−i(m

′
i(φi(ti)))(ui(ai, s

′
−i(·))) = m′i(φi(ti))(ui(ai, s

′
−i(h

′k
−i(·))))

= mi(ti)(ui(ai, s−i(h
′k
−i(φ−i(·)))))

= mi(ti)(ui(ai, s−i(h
k
−i(·)))) = ȟk−i(mi(ti))(ui(ai, s−i(·))).

The second equality follows from type morphism preserving representations. The third
equality is implied by the induction hypothesis and φ being a type morphism.

It follows now that

h
′k+1
i (φi(ti)) =

(
h
′k
i (φi(ti)), ȟ

′k
−i(m

′
i(φi(ti)))

)
=

(
hki (ti), ȟ

k
−i(mi(ti))

)
= hk+1

i (ti).

�

Define the universal Choquet expected utility representation type space by letting T ∗i
to be the set of all i-descriptions in Hi, i.e., all hierarchies t∗i ∈ Hi for which t∗i = hi(ti) for
some ti ∈ Ti in some type space 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉 for the game 〈I, (Ai)i∈I , (ui)i∈I〉.
Define m∗i : T ∗i −→ R(T ∗−i) by m∗i (t

∗
i ) = ȟ−i(mi(ti)), and s∗i (t

∗
i ) = si(ti).

The following results follow now immediately from corresponding results in Ganguli,
Heifetz, and Lee (2016) and the above results and construction.

Proposition 8 〈(T ∗i )i∈I , (m
∗
i )i∈I , (s

∗
i )i∈I〉 is a Choquet expected utility representation type

space.

Proposition 9 For every Choquet expected utility representation type space 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉,
the description map h : T −→ T ∗ is a type morphism.

Theorem 8 〈(T ∗i )i∈I , (m
∗
i )i∈I , (s

∗
i )i∈I〉 is the universal CEU type space.
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D.2 Universal Capacity Type Space

Our goal is to construct a universal capacity type space. The basic idea is to map CEU
representation type spaces to capacity type spaces in such a way that type morphisms
are preserved. Hence, the terminal object of the category of CEU type spaces would be
mapped to the terminal object of the category of capacity type spaces, which would be
the universal capacity type space.

We start with a preliminary observation that follows directly from arguments in the
the prior section:

Remark 12 Any measurable function φ : Y −→ Z defines a function φ̃ : C(Y ) −→ C(Z)
satisfying for any E ∈ ΣZ, φ̃(ν�Y )(E) = ν�Y (φ−1(E)).

Definition 31 Given two capacity type spaces 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉 and 〈(T ′i )i∈I , (τ ′i)i∈I , (s′i)i∈I〉,
a type morphism is a function φ = (φi)i∈I : T −→ T ′ such that for each i ∈ I,

1. φi : Ti −→ T ′i is measurable,

2. for each ti ∈ Ti, τ ′i(φi(ti)) = φ̃i(ti), i.e., for any E ∈ ΣT ′−i
, τ ′i(φi(ti)) = τi(φ

−1
i (E)).

3. s′i ◦ φi = si.

For capacity type spaces, type morphisms are interpreted as mappings that preserve
beliefs.

Definition 32 A capacity type space 〈(T ∗i )i∈I , (τ
∗
i )i∈I , (s

∗
i )i∈I〉 is universal if for every

capacity type space 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉 there exists a unique type morphism from
〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉 to 〈(T ∗i )i∈I , (τ

∗
i )i∈I , (s

∗
i )i∈I〉.

In order to map structure from collections of CEU representation type spaces to
collections to capacity type spaces, we start by briefly introducing the useful terminology
of basic category theory (see MacLane, 1978). A category C consists of a collection of
objects and a collection of morphisms. Each morphism f : A −→ B in the category has
a domain and a codomain, which are objects in the category. Composition gf is defined
for any two morphism f and g of the category such that the codomain of f is the domain
of g. Composition is associative. Finally, for each object there is an identity morphism.

Let R denote the collection of CEU representation type spaces and type morphisms
and C the collection of capacity type spaces and type morphism. Consider R as a
category as follows: The collection of objects is the collection of CEU representation
type spaces. The collection of morphisms are type morphisms. Clearly, composition of
type morphisms is well-defined and is associative. Moreover, for each CEU representation
type space, the type morphism from the type space to itself is the identity morphism.
Analogous for C. We observe:
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Remark 13 R and C are well-defined categories.

A terminal object of a category is an object A of the category such that for each
object B of the category there is exactly one morphism f : B −→ A. The following
remark is clear from the definition of universal type space:

Remark 14 For any category of type spaces for which objects are type spaces and mor-
phisms are type morphisms, the terminal object is the universal type space.

Let C and D be two categories. A functor F : C −→ D is a mapping such that
for any object A in category C, FA is an object in category D and for any morphism
f : A −→ B of category C, Ff : FA −→ FB is a morphism of category D. Moreover,
for any two morphisms f : A −→ B and g : B −→ C, Ffg = FfFg. Finally, for any
object A of category C, the functor assigns to the identity morphisms idA the morphism
idFA in the category D, i.e., FidA = idFA.

Let A,B be two objects in a category C. Denote by Hom(A,B) the collection of
morphisms with domain A and codomain B in the category C. A functor F : C −→ D
is faithful if F : Hom(A,B) −→ Hom(FA, FB) is injective. A functor F is full if
F : Hom(A,B) −→ Hom(FA, FB) is surjective. A functor that is full and faithful it
called fully faithful.

A functor F : C −→ D reflects a property P if whenever Ff has property P then
so has f . It is easy to verify that a fully faithful functor reflects the property of being a
terminal object. That is, if FA is a terminal object of category D then so is A a terminal
object of category D.

A functor F : C −→ D is an isomorphism if there is a functor G such that FG = idC
and GF = idD (as for instance understood as morphisms in the category of categories).
Clearly, if F is an isomorphism than it is fully faithful but the converse is not true.

To show the existence of a universal capacity type space the idea is to find a full and
faithful functor (in fact, an isomorphism) from the category of CEU representation type
spaces to the category of capacity type spaces.

Theorem 9 There exists a universal capacity type space, the terminal object of category
C.

Proof. Let R be the category of CEU representation type spaces and C be the
category of capacity type spaces. Define a functor F : R −→ C as follows:

F 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉 = 〈(T ′i )i∈I , (τi)i∈I , (s′i)i∈I〉 defined by for all i ∈ I

(i) T ′i = Ti

(ii) s′i = si
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(iii) τi(ti) is the capacity associated with CEU representation mi(ti). Since the Bernoulli
utility function ui is fixed with the game 〈I, (Ai)i∈I , (ui)i∈I〉 and the capacity as-
sociated with mi(ti) is unique by Chateauneuf’s (1994) representation theorem,
τi(ti) is well-defined. I.e., τi(ti) is the capacity that satisfies for all ai ∈ Ai,
mi(ti)(ai) =

∫
T−i

ui(ai, s−i(t−i))dτi(ti)(t−i).

For any φ : T −→ T ′ in R, Fφ = φ. I.e., the type morphism from CEU representation
type space 〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉 to CEU representation type space 〈(T ′i )i∈I , (m′i)i∈I , (s′i)i∈I〉
is mapped by F to the type morphism from capacity type space 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉
to capacity type space 〈(T ′i )i∈I , (τ ′i)i∈I , (s′i)i∈I〉 where 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉 is the ca-
pacity type space that the functor F assigns to the CEU representation type space
〈(Ti)i∈I , (mi)i∈I , (si)i∈I〉 and 〈(T ′i )i∈I , (τ ′i)i∈I , (s′i)i∈I〉 is the capacity type space that the
functor F assigns to the CEU representation type space 〈(T ′i )i∈I , (m′i)i∈I , (s′i)i∈I〉. That
is, the functor F maps the type morphism φi : Ti −→ T ′i to itself. Moreover, Fφ̌ = φ̃.
I.e., the functor F maps for every player i ∈ I, φ̌i : R(T−i) −→ R(T ′−i) uniquely to

φ̃i : C(T−i) −→ C(T ′−i) (see Remark 12).

By analogous arguments, F has an inverse functor G such that it is an isomorphism.
This follows from the one-to-one correspondence between the CEU representation and
the capacity by Chateauneuf’s (1994) representation theorem given that Bernoulli utility
functions are fixed with the game 〈I, (Ai)i∈I , (ui)i∈I〉.

Since F and G are isomorphisms, functor F (and G) is fully faithful and preserves ter-
minal objects. Hence, the universal CEU representation type space, the terminal object
of the category of CEU representation type spaces, is mapped into the terminal object
of the category of capacity type spaces. This is the universal capacity type space. �

It is useful to “unfold” hierarchies of beliefs for capacity type spaces analogous to
hierarchies of representations for CEU representation type spaces.

For each player i ∈ I, set inductively

L0
i = Ai

and for k ≥ 1

Lk+1
i = Lki × C(Lk−i) = L0

i ×
(
×kj=0C(L

j
−i)
)
.

The space of i-hierarchies is

Li = L0
i ×

(
×∞j=0C(L

j
−i)
)

Denote by πki : Li −→ Lki the projection maps for k ≥ 0 and i ∈ I.

Given a capacity type space 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉, define for each i ∈ I an i-
description map `i : Ti −→ Li as follows: `0

i : Ti −→ L0
i is uniquely defined by `0

i = si.
Inductively, for k ≥ 1 define `k+1

i : Ti −→ Lk+1
i by

`k+1
i (ti) =

(
`ki (ti),

˜̀k
−i(τi(ti))

)
=
(
si(ti), ˜̀0

−i(τi(ti)), ...,
˜̀k
−i(τi(ti))

)
, where ˜̀k

i : C(T−i) −→
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C(Lk−i) is the mapping between capacities defined in Remark 12.

Define `i : Ti −→ Li as the unique function that satisfies for all k ≥ 0 `ki = πki (`i),
i.e.,

`i(ti) =
(
si(ti), ˜̀0

−i(τi(ti)), ...,
˜̀k
−i(τi(ti)), ...

)
.

Theorem 10 The universal capacity type space 〈(T ∗i )i∈I , (τ
∗
i )i∈I , (s

∗
i )i∈I〉 is given by for

any player i ∈ I, T ∗i be the set of all i-descriptions in Li, i.e., all hierarchies t∗i ∈ Li for
which t∗i = `i(ti) for some ti ∈ Ti in some type space 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉 for the game
〈I, (Ai)i∈I , (ui)i∈I〉. The type mapping τ ∗i : T ∗i −→ C(T ∗−i) is given by τ ∗i (t∗i ) = ˜̀−i(τi(ti)),
and s∗i (t

∗
i ) = si(ti).

Proof. By Proposition 9 the description map h in category R is a type morphism.
Since the functor F defined in the proof of Theorem 9 is an isomorphism, it preserves
type morphisms and maps it to ` in C and the claim follows. �

E Proofs of Section 4

E.1 Proof of Theorem 6

Before we prove by induction, we state a construction that facilitates the proof of Rk
i ⊆

si(B
kCRi), k = 1, ....

Construction: Let 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉 be a capacity type space such that for each
i ∈ I,

(i) Ti is isomorphic to Ai×C(A−i). That is, there exists a bijection θi : Ai×C(A−i) −→
Ti with both θi and θ−1

i measurable. We consider Ai×C(A−i) as a measurable space
with σ-algebra 2Ai ⊗ ΣC(A−i).

(ii) si : Ti −→ Ai is such that for all (ai, νi) ∈ Ai × C(A−i),

si(θi(ai, νi)) = ai.

(iii) τi : Ti −→ C(T−i) is such that for all (ai, νi) ∈ Ai × C(A−i),

τi(θi(ai, νi))
(
(s−i)

−1(E)
)

= νi(E) for all E ⊆ A−i.

Typically there might be more than one capacity type spaces 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉
satisfying (i) to (iii). Yet, for any such two capacity type spaces 〈(Ti)i∈I , (τi)i∈I , (si)i∈I〉
and 〈(T ′i )i∈I , (τ ′i)i∈I , (s′i)i∈I〉 satisfying for all i ∈ I (i) to (iii), there exist unique type
morphisms φ : T −→ T ∗ and φ′ : T ′ −→ T ∗ to the universal capacity type space
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〈(T ∗)i∈I , (τ ∗i )i∈I , (s
∗
i )i∈I〉 (see Appendix D) that preserve i-description maps. In particu-

lar, it satisfies for each i ∈ I,

s∗i (φi(θi(ai, νi))) = s∗i (φ
′
i(θ
′
i(ai, νi))) = ai,

τ ∗i (φi(θi(ai, νi)))
(
(s∗−i)

−1(E)
)

= τ ∗i (φ′i(θ
′
i(ai, νi)))

(
(s∗−i)

−1(E)
)

= νi(E) for all E ⊆ A−i.

In fact, for each i ∈ I, h2
i (φi(θi(ai, νi))) = h2

i (φ
′
i(θ
′
i(ai, νi))) = (ai, νi).

Fix a capacity type space with θi, i ∈ I, as defined in the construction (i.e., satisfying
(i) to (iii)). For each i ∈ I, define the map θ∗i : Ai × C(A−i) −→ T ∗i by θ∗i = φi ◦ θi. For
all i ∈ I, θ∗i is measurable because both φi and θi are measurable.

We are now ready to prove the theorem:

Proof of R1
i = si(B

1CRi): For any ti ∈ B1CRi, si(ti) is a Choquet best response to
τi(ti)A−i ∈ C(A−i). Thus, si(ti) ∈ R1

i .

For the converse, let ai ∈ R1
i by Theorem ??. Then there exists νi ∈ C(A−i) such that

ai is a Choquet best response to νi. Consider t∗i = θ∗i (ai, νi) ∈ T ∗i . Then by construction
s∗i (t

∗
i ) = ai and ai is a Choquet best response to τ ∗i (t∗i )|A−i . Thus, t∗i ∈ B1CRi.

Induction hypothesis: R`
i = si(B

`CRi) for all i ∈ I and ` = 1, ..., k.

Induction step: We need to show Rk+1
i = si(B

k+1CRi) for all i ∈ I.

By definition of Bk+1CRi, for any t∗i ∈ Bk+1CRi,

τ ∗i (t∗i )((T
∗
−i \BkCR−i) ∪ F ) = τ ∗i (t∗i )(F )

for all measurable F ⊆ BkCR−i. Since by the induction hypothesis, s∗j(B
kCRj) = Rk

j

for all j ∈ I,
τ ∗i (t∗i )|A−i ((A−i \R

k
−i) ∪G) = τ ∗i (t∗i )|A−i (G)

for all G ⊆ Rk
−i. Observe τ ∗i (t∗i )|A−i ∈ Ck+1

i . Moreover, t∗i ∈ Bk+1CRi ⊆ B1CRi means
that s∗i (t

∗
i ) is a Choquet best response to τ ∗i (t∗i )|A−i . Thus s∗i (t

∗
i ) ∈ Rk+1

i .

For the converse, let ai ∈ Rk+1
i by Theorem ??. There exists νi ∈ Ck+1 such that ai

is a Choquet best response to νi. We have νi ∈ Ck+1 if and only if

νi((A−i \Rk
−i) ∪ F ) = νi(F ) for all F ⊆ Rk

−i

if and only if

τ ∗i (θ∗i (ai, νi))((s
∗
−i)
−1((A−i \Rk

−i) ∪ F )) = τ ∗i (θ∗i (ai, νi))((s
∗
−i)
−1(F )) for all F ⊆ Rk

−i

if and only if, by the induction hypothesis

τ ∗i (θ∗i (ai, νi))((T−i \BkCR−i) ∪ E)) = τ ∗i (θ∗i (ai, νi))(E) for all measurable E ⊆ BkCR−i

if and only if θ∗i (ai, νi) ∈ Bk+1CRi. By definition, s∗i (θ
∗
i (ai, νi)) = ai.

Since we have shown the equivalence for any finite number k and i ∈ I, we have by
Remark ??, Theorem ??, and the fact that Ai is finite for every i ∈ I that it also holds
in the limit. Thus, for all i ∈ I, R∞i = si(CBCRi).
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E.2 Proof of Proposition 5

TBA, Adam.

E.3 Proof of Proposition 6

E.4 Proof of Remark 6

E.5 Proof of Conjecture 1

E.6 Proof of Conjecture 2

E.7 Proof of Conjecture 3
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[47] Köbberling, V. and P. Wakker (2003). Preference Foundations for Nonexpected Util-
ity: A Generalized and Simplified Technique. Mathematics of Operations Research
28, 395-423.

[48] Lo, K.C. (1996). Equilibrium in Beliefs under Uncertainty, Journal of Economic
Theory 71, 443 - 484.

[49] Lo, K.C. (1999). Extensive Form Games with Uncertainty Averse Players. Games
and Economic Behavior 28, 256 – 270.

[50] MacLane, S. (1978). Categories for the working mathematician, 2nd edition,
Springer: Berlin.

[51] Marinacci, M. (2000). Ambiguous games, Games and Economic Behavior 31, 2000,
191–219.

[52] Marinacci, M. and L. Montrucchio (2004). Introduction to the mathematics of ambi-
guity, in: Uncertainty in Economic Theory: a collection of essays in honor of David
Schmeidler’s 65th birthday (I. Gilboa, ed.), 46-107, Routledge, New York, 2004.

[53] Mertens, J.F. and S. Zamir (1985). Formulation of Bayesian analysis for games with
incomplete information, International Journal of Game Theory 14, 1–29.

[54] Morris, S. (1997). Alternative definitions of knowledge. In: Bacharach, M.O.L.,
Gerard-Varet, L.A., Mongin, P., Shin, H.S. (Eds.), Epistemic Logic and the Theory
of Games and Decisions. Kluwer Academic Publishers, pp. 217–233.

[55] Mukerji, S. (1998). Ambiguity Aversion and Incompleteness of Contractual Form,
The American Economic Review 5, 1207–1231.

[56] Mukerji, S. and J.-M. Tallon (2001). Ambiguity Aversion and Incompleteness of
Financial Markets, Review of Economic Studies 68, 883 – 904.

59



[57] Mukerji, S. and J.-M. Tallon (2004). Ambiguity aversion and the absence of wage
indexation, Journal of Monetary Economics 51, 653 – 670.

[58] Nehring, K. (1999), Capacities and probabilistic beliefs: a precarious coexistence,
Mathematical Social Sciences 38, 197–213.

[59] Nakamura, Y. (1990). Subjective expected utility with non-additive probabilities on
finite state spaces, Journal of Economic Theory 51, 346 – 366.

[60] Nishimura, K. G. and H. Ozaki (2004). Search and Knightian uncertainty, Journal
of Economic Theory 119, 299 –333.

[61] Osborne, M. and A. Rubinstein (1995). A course in game theory, MIT Press.

[62] Pearce, D.G. (1984). Rationalizable strategic behavior and the problem of perfection,
Econometrica 52, 1029–1050.

[63] Pinter, M. (2012). Type spaces with non-additive beliefs, Corvinus University.

[64] Riedel, F. and L. Sass (2014). Ellsberg games, Theory and Decision 76, 469–509.

[65] Samuelson, L. (1992). Dominated strategies and common knowledge, Games and
Economic Behavior 4, 284–313.

[66] Sarin, R. and P. Wakker (1992). A simple axiomatization of nonadditive expected
utility, Econometrica 60, 1255–1272.

[67] Schmeidler, D. (1986). Integral Representation Without Additivity, Proceedings of
the American Mathematical Society 97, 255 – 261.

[68] Schmeidler, D. (1989). Subjective probability and expected utility without additiv-
ity, Econometrica 57, 571–587.

[69] Salo, A. and M. Weber (1995) Ambiguity aversion in first-price sealed-bid auctions,
Journal of Risk and Uncertainty 11, 123–137.

[70] Spohn, W. (1982). How to make sense of game theory, in: Stegmüller, W., Balzer,
W., and W. Spohn (eds.), Philosophy of economics, Springer-Verlag, 239–270.

[71] Tan, C.C.T. and S.R.d.C. Werlang (1988). The Bayesian foundations of solution
concepts in games, Journal of Economic Theory 45, 370–391.

[72] Wald, A. (1949). Statistical Decision Functions, Annals of Mathematical Statistics,
20, 165–205.

[73] Wakker, P. (1990). Characterizing optimism and pessimism directly through
comonotonicity, Journal of Economic Theory 52, 453–463.

60



[74] Wakker, P. (1989). Continuous subjective expected utility with non-additive proba-
bilities, Journal of Mathematical Economics 18, 1–27.

[75] Wakker, P. and D. Deneffe (1996). Eliciting Von Neumann-Morgenstern Utilities
When Probabilities Are Distorted or Unknown, Management Science 42, 1131 –
1150.

[76] Weinstein, J. (2016). The Effect of Changes in Risk Attitude on Strategic Behavior,
Econometrica 84, 1881-1902.

61


