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Abstract

In this paper, we study choice under growing awareness in the wake of new discoveries.

The decision maker’s behavior is described by two preference relations, one before and one

after new discoveries are made. The original preference admits a subjective expected utility

representation. As awareness grows, the original decision problem expands and so does the

state space. Therefore, the decision maker’s original preference has to be extended to a larger

domain, and consequently the new preference might exhibit ambiguity aversion. We propose two

consistency notions that connect the original and new preferences. Unambiguity Consistency

requires that the original states remain unambiguous while new states might be ambiguous.

This provides a novel interpretation of ambiguity aversion as a systematic preference to bet on

old states than on newly discovered states. Likelihood Consistency requires that the relative

likelihoods of the original states are preserved. Our main results axiomatically characterize

a maxmin expected utility (MEU) representation of the new preference that satisfies the two

consistency notions. We also extend our model by allowing the initial preference to be MEU,

and characterize reverse full-Bayesiansim, which is an extension of the reverse Bayesianism of

Karni and Vierø (2013) to MEU preferences.
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1 Introduction

When modeling choice behavior under uncertainty, economists take for granted that the descrip-

tion of the underlying decision problem – including the states of nature, actions and consequences

– is fixed. However, in many real life situations, a decision maker (henceforth, DM) makes new

discoveries that change the decision problem. New scientific insights, novel technologies, new med-

ical treatments, new financial instruments, or new goods emerge on an almost daily basis. Such

discoveries might reveal contingencies of which the DM was unaware.1 As awareness grows, the

DM’s universe (i.e., state space) expands and this might affect her preferences. In this paper, we

explore how the DM’s beliefs and tastes evolve.

We provide a theory of choice under growing awareness in which a subjective expected utility

(SEU) preference (Anscombe and Aumann, 1963) extends to a maxmin expected utility (MEU) pref-

erence (Gilboa and Schmeidler, 1989). While the extended preference captures ambiguity aversion,

it inherits some properties of the initial SEU preference. Our theory provides a novel interpretation

of ambiguity aversion. In particular, ambiguity arises because the DM treats new and old states

differently; there is no exogenous information about states. In contrast, in the Ellberg experiments

exogenous information about states is provided and ambiguity arises since the DM treats states

with known and unknown probabilities differently.

To illustrate changes in beliefs due to growing awareness, consider a patient who suffers from

a disease and needs to choose an appropriate treatment. There are two standard treatments, A

and B. Each treatment leads to one of two possible outcomes: a success or a failure. The patient

believes that each treatment is successful with probability 1
2 .

Suppose now that the patient consults her doctor and discovers that there is a new treatment

N , which may be successful or not. Since this treatment is new, the patient faces a new decision

problem. How does she extend her original beliefs to evaluate the new treatment? First, the patient

needs to form new beliefs about the conceivable outcomes of the new treatment in order to evaluate

it. Second, the new discovery might causes the patient to reevaluate her original beliefs regarding

the outcomes of the standard treatments A and B.

Given the discovery of treatment N , the patient’s original preferences might change fundamen-

tally. In particular, she may not be able to come up with a unique probability that treatment N

will be successful, and therefore she may be cautious about the novel treatment. To discipline the

effect of new discoveries, we consider two consistency notions between the patient’s behavior before

and after the discovery.

Behaviorally, our consistency notions can be described by the way the standard treatments

are evaluated after awareness has changed. Our first consistency notion requires that treatments

A and B are still evaluated with respect to a (unique) probability measure over old states, yet

the measure might change. Under this consistency notion, the values of A and B might change

1For Schipper (2014a, p.1), “unawareness refers to the lack of conception rather than the lack of information.”
Under lack of information, the DM does not know which conceivable states may occur, whereas under lack of
conception, she cannot even conceive that there may be other conceivable states which will determine her payoffs.
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after the discovery. However, our second consistency notion requires that the ranking over the

old treatments does not change as awareness grows. In general, the two consistency notions are

independent.2 Our goal is to axiomatically characterize each consistency notion by connecting the

patient’s initial and new preferences.

To study growing awareness formally, we introduce a general framework that can cover other

widely studied approaches to model growing awareness such as Karni and Vierø (2013) (KV, hence-

forth) and Heifetz et al. (2006, 2008, 2013). Although our framework is more general than KV’s,

it is useful to contrast our approaches. They construct state spaces explicitly by invoking the ap-

proach of Schmeidler and Wakker (1990) and Karni and Schmeidler (1991): a state specifies the

unique consequence that is associated with every act. Within this approach, KV have introduced an

elegant theory of choice under growing awareness called reverse Bayesianism. They focus on SEU

preferences and characterize the evolution of probabilistic beliefs in the decision theoretic frame-

work of Anscombe and Aumann (1963). However, under reverse Bayesianism, growing awareness

does not affect the SEU form of preferences and thus the theory precludes ambiguity.

In contrast, our theory allows the DM’s behavior to change fundamentally as awareness grows.3

While being originally a SEU maximizer, the DM might become ambiguity averse in an expanded

universe. More specifically, the DM’s behavior is described by two preference relations, one before

and one after a discovery is made. The initial preference takes the SEU form. One can think of

this assumption as follows: the DM is relatively familiar with the original decision problem and

therefore she has come up with a (unique) probability measure over the states. As awareness grows,

the extended preference admits a MEU representation, capturing ambiguity in an expanded state

space.

Our main results behaviorally characterize the evolution of an original SEU preference to a

new, extended MEU preference under both consistency notions. The first consistency notion,

called Unambiguity Consistency, requires that the new events that correspond to the old states are

revealed to be unambiguous by the new MEU preference; only the new states may be ambiguous.

An extended MEU preference that satisfies Unambiguity Consistency is characterized by a

novel axiom called Negative Unambiguity Independence (NUI) (see Theorem 1). It states that the

DM can hedge against the ambiguity of the new acts (e.g., the new treatment N). However, mixing

them with the old acts (e.g., the standard treatments A or B) cannot be used as a hedging strategy.

Under Unambiguity Consistency, new discoveries might affect the DM’s ranking over the old

acts since her probabilistic beliefs (as well as her risk preference) might change. For instance, after

the discoveries of the new treatment N , the patient might believe that success under treatment A

is more likely than under treatment B, leading her to strictly prefer the old treatment A over B.

2However, in our patient example the second consistency notion implies the first one.
3There is empirical evidence suggesting that individuals’ awareness and ambiguity are related. For instance,

Giustinelli and Pavoni (2017) ask Italian middle schoolers about their likelihoods to successfully graduate from
different high school tracks. The authors find that students who were initially unaware of some school tracks (but
learn their existence during the survey) perceive significant ambiguity about the success of alternative curricula that
have these tracks. Related to our patient story, there is a growing body of evidence reporting people’s ambiguity
averse attitude when they face new medical tests and treatments (e.g., see Han et al. (2009) and Taber et al. (2015)).
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Our second consistency notion, called Likelihood Consistency, requires that the new extended

preference maintains the relative likelihoods of the original states. Preserving the original likeli-

hoods might be reasonable in choice situations where the original preference is supported by hard

facts or objective information. Likelihood Consistency is characterized by Binary Awareness Con-

sistency (BAC), which requires that the DM’s ranking of old acts (standard treatments A and B)

is not affected by growing awareness (Theorem 2).4

Due to growing awareness the state space expands. We are particularly interested in two types

of state space expansions, refined expansion and genuine expansion. Under refined expansions,

the DM becomes aware of “finer descriptions” of the original states. However, under genuine

expansions, the DM becomes aware of “completely new” states.5 Axiomatic characterizations of

the two consistency notions do not distinguish these two separate cases explicitly. Regardless, the

two cases can be behaviorally disentangled, which could be difficult when both preferences are

SEU. When the new treatment N is discovered, the state space is refined: each original state is

extended by indicating whether treatment N leads to a success or a failure. In this context, our

theory implies that the old treatments A and B are unambiguous acts while the new treatment N

is ambiguous. Consequently, an ambiguity averse DM tends to prefer the old, unambiguous acts to

the newly discovered ones.

However, in the context of genuine expansion of the state space ambiguity aversion will be

exhibited differently. Suppose that the patient discovers that the standard treatments A and B

might cause a health complication. In this case, the original state space is extended by completely

new states indicating whether treatments A and B lead to the health complication or not (i.e.,

genuine expansion). If the patient perceives ambiguity about the completely new states, then the

standard treatments become ambiguous acts. Therefore, the patient prefers mixtures between the

old treatments A and B over A (and B).

At a fundamental level, our theory provides a novel interpretation of the widely-studied am-

biguity phenomenon. Typically, as in the classical Ellsberg experiments, ambiguity is exogenously

created. That is, subjects are informed about exogenous probabilities for some events in a given

state space, and for other states such information is missing. The task is to elicit subjects’ attitudes

towards ambiguity. A systematic preference for betting on known probability events rather than

betting on unknown probability events is understood as aversion towards the exogenous ambiguity.

In our theory, the DM perceives ambiguity about states of which she was originally unaware.

In other words, an expanding universe can be seen as a “source” of ambiguity. As awareness grows,

the DM cannot extend her old subjective belief uniquely so that her new beliefs are represented by

a set of probability measures. Therefore, in our theory ambiguity aversion is displayed differently as

a preference for betting on old, familiar states rather than betting on the newly discovered states.6

4Notice that Unambiguity Consistency is trivially satisfied in the setup of KV. The extended preference is SEU in
a special case where all the newly discovered states are unambiguous. In this case, Theorem 2 provides an alternative
characterization (interpretation) of reverse Bayesianism of KV.

5For example, in the KV framework, the discovery of acts leads to refined expansions while the discovery of
consequences lead to genuine expansions.

6Indeed, Daniel Ellsberg describes ambiguity as a much broader phenomenon than a comparison between known
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To show that Likelihood Consistency and Unambiguity Consistency can be extended to the

setting where one MEU preference evolves to another MEU preference, we extend our model by

allowing the initial preference to be a MEU preference (see Section 5). This extension also illustrates

that our framework can be extended to settings with more than two periods. Under the reverse

Bayesianism of KV, the initial prior is the Bayesian update of the extended prior. Interestingly,

under our extension of Likelihood Consistency, called reverse full-Bayesianism, the initial set of

priors is the full-Bayesian (i.e., prior-by-prior) update of the extended set of priors. Hence, our

reverse full-Bayesianism is an extension of the reverse Bayesianism of KV to MEU preferences.

The rest of the paper is organized as follows. Section 2 presents the basic setup and illus-

trates how new discoveries expand the original state space. In Section 3, we discuss the SEU and

MEU representations of the original and new preferences, and provide our definitions of consistent

evolution of beliefs. In Section 4, we provide representation theorems that characterize our two

consistency notions. In Section 5, we consider the case where the initial preference is MEU. In

Sections 4.4 and 5.3, we study dynamic consistency of MEU preferences. In Section 6, we study a

parametric version of our MEU representation. A brief overview of the literature on choice under

(un)awareness is provided in Section 7. The proofs are collected in Appendix A.

2 Decision Problems

In this section, we demonstrate how a DM’s decision problem expands as awareness grows.

Let S be a nonempty, finite set of states. The elements of S represent all the possible resolutions

of uncertainty. Let C be a nonempty, finite set of consequences. Denote by ∆(C) the set of lotteries

on C, i.e., functions p : C → [0, 1] such that
∑

c∈C p(c) = 1. Objects of choice are the so-called

Anscombe-Aumann acts; i.e., mappings from states to lotteries. Let F̂ ≡ {f : S → ∆(C)} be the

set of all acts. A collection D ≡ {S,C, F̂} describes a choice problem under uncertainty. The DM’s

behavior is modeled via a preference relation on F̂ , denoted by <F̂ . As usual, �F̂ and ∼F̂ are the

asymmetric and symmetric parts of <F̂ , respectively.

Suppose the DM initially faces a choice problem D, called the original decision problem. Our

primary goal is to examine how the DM’s behavior might change as her awareness grows due to

new discoveries. To this end, the original decision problem needs to be reformulated to incorporate

growing awareness. We model choice situations in which D expands to a new choice problem

D1 ≡ {S1, C1, F̂1} where |S| < |S1|, C ⊆ C1, and F̂1 ≡ {f : S1 → ∆(C1)}. We call D1 the extended

decision problem. It captures the DM’s increased awareness since the state space and the sets of acts

and consequences “expand.” We denote by <F̂1
the extended preference relation on the extended

set of acts F̂1 in D1. We investigate how the DM’s original preference relation <F̂ evolves to <F̂1
.

The new state space S1 depicts the expansion of the original states space S due to new discov-

eries. We need additional notations to discuss the relationships between S and S1 and F̂ and F̂1.

and unknown probabilities. In his words, ambiguity refers to “a quality depending on the amount, type, reliability
and ‘unanimity’ of information, and giving rise to one’s degree of ‘confidence’ in an estimate of relative likelihoods
(Ellsberg, 1961, p.657).” In our setup, ambiguity might arise even if there are no objective or exogenous probabilities.
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Let E : S → 2S1 \ {∅} be a mapping such that Es ∩ Es′ = ∅ for any s, s′ ∈ S. Here Es is called

the corresponding event in S1 of an original state s ∈ S. Let SR1 ≡
⋃
s∈S Es and SN1 ≡ S1 \ SR1 .

Then Es can be understood as the set of new states in SR1 that “refine” s. We call SR1 a set of

refinements of S and SN1 a set of genuine extensions of S.

We casually use phrases “new” and “old” acts. An act f in the F̂1 is an old act if, for any

s ∈ S and s1, s̃1 ∈ Es, f(s1) = f(s̃1) ∈ ∆(C). Otherwise, we say f ∈ F̂1 is a new act. Therefore,

any old act takes the following form:

(1) (qsEs)s∈S ∪ g =

{
qs if s1 ∈ Es;
g(s1) if s1 ∈ SN1 .

That is, (qsEs)s∈S ∪ g assigns qs to states in Es and g to states in SN1 . Note that for any f ∈ F̂
and g ∈ F̂1, we can construct an old act (f(s)Es)s∈S ∪ g in F̂1. Therefore, we can interpret that

the set of acts F̂ “expands” to F̂1.

2.1 Refined and Genuine Expansions

We are particularly interested in two special cases of the state space expansion. In the first case,

the DM becomes aware of “finer descriptions” of the original states. That is, the original state

space S expands to S1 = SR1 . In other words, the collection of events {Es}s∈S forms a partition of

the expanded state space S1; i.e., S1 = SR1 =
⋃
s∈S Es. For example, suppose that originally a DM

is aware that each day may be either rainy (r) or sunny (s); i.e., S = {r, s}. When she becomes

aware that temperature matters and each day maybe either hot (h) or cold (c), each original

state is refined by the additional information, i.e., S1 = {rh, rc, sh, sc} where Er = {rh, rc} and

Es = {sh, sc}. In this case, we say S1 is a refined expansion of S.

In the second case, the DM becomes aware of “completely new” states. That is, the original

state space S expands to S1 ≡ SR1 ∪ SN1 such that |SR1 | = |S| and SN1 6= ∅. In other words, Es

becomes a state in SR1 that corresponds to s ∈ S. For instance, the DM becomes aware that there

may be a tornado (t); i.e., S1 = {r, s, t} where Er = {r} and Es = {s}. In this case, we say S1 is a

genuine expansion of S.

Our setup captures other widely studied approaches to model growing awareness such as Karni

and Vierø (2013, 2015), Heifetz et al. (2006, 2008, 2013), and Dietrich (2018). However, none

of these papers studies ambiguity. Heifetz et al. (2006, 2008, 2013) provide an elegant model of

growing awareness which is accommodated via a lattice of disjoint state spaces.7 State spaces are

ordered by richness of the vocabularies used to describe states. Each state space corresponds to

one awareness level. As a DM discovers more “expressive” descriptions than the descriptions of

the original state space, she discovers a richer state space associated with a higher awareness level.

7As Dekel et al. (1998) show, the standard approach used to model private information – via a state space with a
partition of it – cannot capture unawareness. To model unawareness, the state space approach has to be augmented
with a structure that accommodates an expansion of the original state space, referring to growing awareness.
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Discoveries of more expressive vocabularies lead to refined expansions of the original state space.8

Dietrich (2018) extends the SEU theorem of Savage (1954) under growing awareness. He also

studies refined and genuine expansions of the original state space. Below we explain the framework

of Karni and Vierø (2013) (henceforth, KV) in more detail to illustrate how the original state space

expands.

KV-approach. In KV, growing awareness is directly linked to discoveries of other primitives of

the decision problem such as acts and consequences. They construct state spaces explicitly by

invoking the approach of Schmeidler and Wakker (1990) and Karni and Schmeidler (1991): a state

specifies the unique consequence that is associated with every act. In particular, S ≡ CF where F

is the set of feasible acts. Given this construction of the state space, a discovery leads to either a

refined or genuine expansion. Specifically, discoveries of new acts lead to refined expansions of the

original state space, while discoveries of new consequences lead to genuine expansions.

To illustrate their approach, consider the patient example discussed in the introduction. Let

C = {c1, c2} be the set of consequences, where c1 and c2 correspond to success and failure, respec-

tively. Let F = {f1, f2} be the set of feasible acts where f1 and f2 correspond to treatments A

and B, respectively. Then there are four states since S = CF (see Table 1).9 In state s1 both

F \ S s1 s2 s3 s4

f1 c1 c1 c2 c2

f2 c1 c2 c1 c2

Table 1: Original state space

treatments f1 and f2 are successful. In state s2, f1 is successful but f2 fails, and so on.

Discoveries of new acts (Refined Expansion). Suppose a new act f̄ 6∈ F is discovered. Then

S1 ≡ CF1
1 where F1 = F ∪{f̄} and C1 = C. Hence, in the KV-approach discoveries of new acts lead

to refined expansions. Suppose that the patient discovers f̄ (the new treatment N). The original

set of acts F = {f1, f2} expands to F1 ≡ {f1, f2, f̄} and the expanded state space, S1 = CF1 ,

consists of eight (i.e., 23) states:

Ff̄ \ Sf̄ s1
1 s1

2 s1
3 s1

4 s1
5 s1

6 s1
7 s1

8

f1 c1 c1 c2 c2 c1 c1 c2 c2

f2 c1 c2 c1 c2 c1 c2 c1 c2

f̄ c1 c1 c1 c1 c2 c2 c2 c2

Table 2: Expanded state space: new act f̄

8Within the lattice structure of unawareness, Schipper (2013) characterizes awareness-dependent SEU preferences,
and shows that (revealed) unawareness has a different behavioral meaning than the notion of null (i.e., impossible)
events. In particular, a DM is unaware of an event if and only if the event and its complement are null events.

9Note that in our framework S and S1 do no have to satisfy S = CF and S1 = C1
F1 .
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Each state determines whether each of the treatments, f1, f2 and f̄ , is successful or not.

Notice that each original state s in S corresponds to an event Es in S1 that refines s; i.e.,

Es = {s1 ∈ S1 : ∃c ∈ C s.t. s1 = (s, c)}. For example, state s1 = (c1, c1) corresponds to the new

event Es1 = {s1
1, s

1
5} that refines s1 by incorporating consequences c1 and c2 associated with the

new act f̄ . In other words, state s1, originally indicating that treatments f1 and f2 are successful,

expands now to two states, s1
1 = (c1, c1, c1) and s1

5 = (c1, c1, c2). In state s1
1, all three treatments

are successful while in state s1
5, treatments f1 and f2 are successful while the new one f̄ is not.

Indeed, the collection of events {Es}s∈S forms a partition of the expanded state space S1; i.e.,

S1 = SR1 =
⋃
s∈S Es.

Discoveries of new consequences (Genuine Expansion). Suppose now a new consequence

c̄ 6∈ C is discovered. Then S1 = CF1
1 where C1 = C ∪{c̄} and F1 = Fc̄ is the set of feasible acts with

extended range due to the discovery of c̄. Since |F | = |Fc̄|, discoveries of new consequences lead to

genuine expansions. For example, suppose that the patient discovers that a health complication c̄

is possible. Since C1 ≡ {c1, c2, c̄}, the new state space S1 ≡ CFc̄1 consists of nine (i.e., 32) states:

Fc̄ \ Sc̄ s1
1 s1

2 s1
3 s1

4 s1
5 s1

6 s1
7 s1

8 s1
9

f1 c1 c1 c2 c2 c1 c̄ c2 c̄ c̄
f2 c1 c2 c1 c2 c̄ c1 c̄ c2 c̄

Table 3: Expanded state space: new consequence c̄

The patient becomes aware of new states in SN1 = {s1
5, . . . , s

1
9}, which is the set of conceivable

states in which the health complication can happen. For example, in states s1
6, s1

8 and s1
9 , f1

(treatment A) leads to the health complication.

When the new consequence c̄ is discovered, the original state space S genuinely expands; i.e.,

|SR1 | = |S|. While states in SR1 ≡ {s1
1, s

1
2, s

1
3, s

1
4} correspond to the original states, the states in

SN1 ≡ S1 \ SR1 are new. In other words, Es is the original state s itself; i.e., Es = {s} = {s1} for

some s1 ∈ S1. For instance, Es1 = {s1} = {s1
1} = {(c1, c1)}.

For two acts f, g ∈ F̂ and any event E ⊆ S, denote by f−E g the (composite) act in F̂ that

returns g(s) in state s ∈ E and f(s′) in state s′ ∈ S \ E. A state s ∈ S is said to be null if

f−s p ∼F̂ f−s q for all p, q ∈ ∆(C), otherwise s is nonnull. For simplicity, we will assume that all

states in S and S1 are nonnull.10

3 Preferences and Consistency Notions

In this section, we illustrate our main idea of how new discoveries affect the DM’s preferences. We

denote by F a family of sets of acts corresponding to increasing levels of awareness. As reference

to the original decision problem D = {S,C, F̂}, we fix F̂ ∈ F and call F̂ the initial set of acts. It is

the set of acts before any discovery is made. The DM’s initial preference relation on F̂ is denoted

10See Karni et al. (2020) for issues involving null states.
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by <F̂ . When a new discovery is made, the original decision problem expands and the preference

relation <F̂ has to be extended to a larger domain. We denote by <F̂1
the extended preference

relation on a set of acts F̂1 in an extended decision problem D1 ≡ {S1, C1, F̂1}.
As awareness grows, the representation of the DM’s preferences might change fundamentally.

To capture the idea of changing preferences formally, we assume that the initial preference is of the

classical subjective expected utility form of Savage (1954).11

Definition 1 (Initial Preference). The initial preference relation <F̂ on F̂ is said to admit

a subjective expected utility (SEU) representation if there exist a (unique) probability measure

µ ∈ ∆(S) and an expected utility functional U :∆(C)→ R such that for any f ∈ F̂ ,

(2) V SEU (f) =
∑
s∈S

U(f(s))µ(s).

However, a DM who is initially a SEU maximizer might perceive ambiguity about newly dis-

covered states. Hence, the extended preference relation admits the maxmin expected utility (MEU)

representation of Gilboa and Schmeidler (1989).

Definition 2 (Extended Preference). The extended preference <F̂1
on F̂1 is said to admit a

maxmin expected utility (MEU) representation if there exist a nonempty, convex, and compact set

of probability measures Π1 ⊆ ∆(S1) and an expected utility functional U1 : ∆(C1) → R such that

for any f ∈ F̂1,

(3) VMEU (f) = min
π∈Π1

∑
s1∈S1

U1(f(s1))π(s1).

After a new discovery, the DM may not be able to form a single probability measure. Hence,

her beliefs over the expanded state space are represented by a set of priors. A DM whose preferences

are governed by the MEU functional is said to be ambiguity averse.12

Our goal is twofold. First, we want to behaviorally underpin the representations (2) and (3).

Second, we will connect the initial preference <F̂ and the extended preference <F̂1
via axioms

characterizing how the DM’s beliefs and tastes evolve as awareness grows.

Notice that both preference relations <F̂ and <F̂1
are fully characterized by tuples (µ,U) and

(Π1, U1) from the respective representations (2) and (3). Therefore, to link the initial and extended

preferences, we will relate (µ,U) and (Π1, U1). In order to make sharp conclusions about how

the initial preferences evolve in response to growing awareness, we will impose two consistency

conditions between µ and Π1.

Our first consistency notion requires that the extended MEU preference inherits the unambi-

guity of the initial SEU preference. Recall that
{
Es
}
s∈S is the family of events in the extended

state space S1 where each Es corresponds to an original state s in S. The first consistency notion,

11In Section 5, we relax this assumption and allow %F̂ to be a MEU preference.
12In contrast, when the min-operator is replaced by a max-operator, a DM is said to be ambiguity loving. The

results of this paper also hold when the DM is ambiguity loving.

9



called Unambiguity Consistency, requires that each event Es is revealed to be unambiguous by the

extended preference relation <F̂1
. Following Nehring (1999), Ghirardato et al. (2004), and Ama-

rante and Filiz (2007) an event Es is unambiguous if each probability measure in Π1 assigns the

same value to Es. This notion is formalized as follows.

Definition 3 (Unambiguity Consistency). Let <F̂ be a SEU preference relation on F̂ with

(µ,U) and <F̂1
be a MEU preference relation on F̂1 with (Π1, U1). Then, <F̂1

is said to be an

unambiguity consistent extension of <F̂ to F̂1, if each event Es that corresponds to an original

state is unambiguous according to <F̂1
, i.e., for all π, π′ ∈ Π1 and s ∈ S,

(4) π(Es) = π′(Es).

Unambiguity Consistency implies that old states are unambiguous. As discussed in the intro-

duction, Unambiguity Consistency provides a novel view of ambiguity. That is, ambiguity appears

since the DM treats new and old states differently.

Under Unambiguity Consistency, the DM’s old belief µ on S and her new beliefs Π1 on {Es
}
s∈S

can be unrelated. Likewise, the DM’s risk preferences, U and U1, may change as awareness grows.

To this end, our second consistency notion, called Likelihood Consistency, directly connects µ and

Π1 by requiring that the DM’s new beliefs Π1 preserve the relative likelihoods of the old belief µ.

This consistency notion is formalized below.

Definition 4 (Likelihood Consistency). Let <F̂ be a SEU preference relation on F̂ with (µ,U)

and <F̂1
be a MEU preference relation on F̂1 with (Π1, U1). Then, <F̂1

is said to be a likelihood

consistent extension of <F̂ to F̂1, if the new beliefs in Π1 preserve the relative likelihoods of µ

on S; i.e., for all s, s′ ∈ S and π ∈ Π1:

(5)
µ(s)

µ(s′)
=
π
(
Es
)

π
(
Es′
) .

There is one important remark. Likelihood Consistency implies that the rankings over old

acts are preserved. In the context of refined expansions of the original state space, Likelihood

Consistency implies Unambiguity Consistency since
∑

s∈S π
(
Es
)

= 1. However, the two consistency

notions are independent in the case of genuine expansions since
∑

s∈S π
(
Es
)
< 1.13

3.1 Illustrations and Behavioral Implications

To illustrate our consistency notions, consider again the patient example. When confronted with

the original model (see Table 1), suppose the patient believes that each state is equally likely. That

is, her belief µ on S is given by µ(s1) = µ(s2) = µ(s3) = µ(s4) = 1
4 . Thus the patient with a SEU

preference <F̂ is indifferent between the two treatments (f1 and f2) and any mixture thereof (i.e.,

αf1 + (1− α)f2 ∼F̂ f1 ∼F̂ f2).

13When initial and extended preferences are SEU, Likelihood Consistency coincides with the reverse Bayesian
updating of KV. However, Likelihood Consistency is more general when ambiguity is allowed.
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Consider now the patient’s extended preference <F̂1
after the new treatment f̄ is discovered. In

this case, each original state s ∈ S admits a finer description depending on whether her treatment

f̄ is successful or not. Hence, S1 has 8 states and is given by Table 2.

The patient might not be able to “split” her initial belief µ(si) across the new states s1
i and

s1
i+4 with i = 1, . . . , 4. For example, she might consider the following set of priors:

(6) Π1 =

{
π ∈ ∆(S1) :

π(s1
i ) + π(s1

i+4) = π(Esi) = β
2 for i = 1, 2;

π(s1
i ) + π(s1

i+4) = π(Esi) = (1− β)1
2 for i = 3, 4,

where β ∈ [0, 1]. Notice that each event Esi = {s1
i , s

1
i+4} in S1 that corresponds to the original

state si ∈ S is unambiguous while each newly discovered state s1
i ∈ S1 is ambiguous. Thus, for any

β ∈ [0, 1], her extended preference <F̂1
preserves unambiguity of the initial preference <F̂ .

When β = 1
2 , the patient’s extended MEU preference is likelihood consistent since the set of

priors maintains the relative likelihoods of µ as µ(si)/µ(sj) = 1
4/

1
4 = π(Esi)/π(Esj ) = 1

4/
1
4 . As

remarked before, Likelihood Consistency implies Unambiguity Consistency under refined expan-

sions. Moreover, the ambiguity averse patient is still indifferent between f1, f2, and any of their

mixtures. However, she strictly prefers either of the standard treatments to the new treatment f̄

(i.e., αf1 + (1− α)f2 ∼F̂1
f1 ∼F̂1

f2 �F̂1
f̄).

Consider now the case in which the new consequence c̄ is discovered (see Table 3). Since the

states s1
5 through s1

9 are newly discovered, the patient might not be able to form a single prior over

S1. Instead, she might consider a set of priors Π1. For instance, consider the following set of priors:

(7) Π1 =
{
π ∈ ∆(S1) : π(s1

i ) =
γ

16
and γ ∈ [1, γ] for all i = 1, . . . , 4

}
.

Under genuine expansions, Likelihood Consistency and Unambiguity Consistency are indepen-

dent. For example, when γ = 1, the extended preference with respect to Π1 reveals that the

original states s1
1 through s1

4 are unambiguous while the newly discovered states s1
5, s

1
6, s

1
7, s

1
8 and

s1
9 are ambiguous. However, when γ = 2, the original states s1

1, s
1
2, s

1
3, and s1

4 are ambiguous and

Unambiguity Consistency is violated. Nevertheless, Π1 still preserves the relative likelihoods of

µ since µ(si)/µ(sj) = 1
4/

1
4 = π(Esi)/π(Esj ) = γ

16/
γ
16 .14 Moreover, the patient’s preference has

different behavioral implications compared to the case where a new act is discovered. Specifically,

the patient, who is still indifferent between old treatments f1 and f2, strictly prefers any mixture

of them over each of f1 and f2 alone. In other words, the patient reveals ambiguity aversion in the

standard sense (i.e., αf1 + (1− α)f2 �F̂1
f1 ∼F̂1

f2).

To sum up, ambiguity arises differently depending on whether refined or genuine expansion has

occurred. Under refined expansion, only new acts are ambiguous, while under genuine expansion,

old acts might be ambiguous. Hence, two different types of discoveries can be behaviorally disen-

tangled. However, this distinction is difficult when both the initial and extended preferences are

14Similar to (6), it is not difficult to construct an example in which s1
1, s

1
2, s

1
3, and s1

4 are unambiguous, but Π1 does
not preserve the relative likelihoods of µ.
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SEU. Moreover, regardless of what is discovered, (i) Unambiguity Consistency implies that new

states may be ambiguous while old states are unambiguous, and (ii) Likelihood Consistency implies

that the rankings over old acts are preserved (i.e., f1 ∼F̂ f2 and f1 ∼F̂1
f2).

4 Behavioral Foundations

In this section, we axiomatically characterize Unambiguity and Likelihood Consistency. Although

we highlighted the behavioral differences between refined and genuine expansions, our results are

unified in a way that axioms and characterization theorems are the same in both contexts.

4.1 Basic Preference Structure

We have the initial preference <F̂ from the initial decision problem D = (S,C, F̂ ) and the extended

preference <F̂1
from the new decision problem D1 = (S1, C1, F̂1).

For all f, g ∈ F̂ , and α ∈ [0, 1], αf + (1 − α)g ∈ F̂ is the act h ∈ F̂ defined by h(s) =

αf(s) + (1− α)g(s) for any s ∈ S. Then, F̂ is a convex subset of a linear space. First, we assume

that both <F̂ and <F̂1
satisfy the following basic axioms:

(A.1) (Weak order) For all F̂ ∈ F , the preference relation <F̂ is transitive and complete.

(A.2) (Archimedean) For all F̂ ∈ F and f, g, h ∈ F̂ , if f �F̂ g and g �F̂ h, then there exist

α, β ∈ (0, 1) such that αf + (1− α)h �F̂ g and g �F̂ βf + (1− β)h.

(A.3) (Monotonicity) For all F̂ ∈ F and f, g ∈ F̂ , if f(s) <F̂ g(s) for all s ∈ S, then f <F̂ g.

(A.4) (Nondegeneracy) For all F̂ ∈ F , there are f, g ∈ F̂ such that f �F̂ g.

To capture our idea that the DM’s behavior might change fundamentally as awareness grows,

we allow for <F̂ and <F̂1
to belong to different families of preferences. In particular, we assume

that the initial preference relation <F̂ satisfies the Independence Axiom:

(A.5) (Independence) For all f, g, h ∈ F̂ , and α ∈ (0, 1], f <F̂ g if and only if αf + (1− α)h <F̂

αg + (1− α)h.

That is, the initial preference relation <F̂ will admit the SEU representation (1) with respect

to a unique probability distribution µ on S and an expected utility functional U : ∆(C) → R
(e.g., see Anscombe and Aumann, 1963). However, the extended preference <F̂1

might violate the

Independence Axiom allowing for ambiguity.

4.2 MEU and Unambiguity Consistency

In this subsection, we obtain the MEU representation of the extended preference <F̂1
that is an

unambiguity consistent extension of the initial SEU preference <F̂ .

12



We introduce an axiom, called Negative Unambiguity Independence (henceforth, NUI). Roughly

speaking, NUI specifies how the new and old acts are evaluated by the extended preference <F̂1
.

The axiom contains two parts. The first part states that if a new act f is weakly preferred to a

lottery q, then mixing the act with another act g is at least as good as mixing the lottery with g.

The second part directly connects the new acts with the old, binary acts (called bets). Specifically,

it requires that bets on the events that correspond to original states cannot be used to hedge against

ambiguity of the new acts.

Recall that, for each initial state s ∈ S, Es denotes the event in S1 which corresponds to s ∈ S.

We can now state NUI formally.

(A.6) (Negative Unambiguity Independence (NUI)) For all f, g ∈ F̂1, q ∈ ∆(C1) and α ∈
[0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g,

and when g = pEsr for some s ∈ S and p, r ∈ ∆(C1),

f ∼F̂1
q if and only if αf + (1− α)g ∼F̂1

αq + (1− α)g.

The first part suggests that the objective lottery q, which is a constant act and thus ambiguity

free, suffers more (or gains less) than the subjective act f from mixtures that eliminate its objective

appeal. However, the second part suggests that the objective lottery q and the subjective act f

equally suffer (or equally gain) when they are mixed with the previously known bets. Note that

NUI does not explicitly depend on the initial preference since %F̂ is a SEU preference. However, it

implicitly depends on the initial preference since Es is the event that corresponds to the original,

unambiguous state.

The spirit of our axiom is reminiscent of Negative Certainty Independence axiom introduced

by Dillenberger (2010) and used by Cerreia-Vioglio et al. (2015) to characterize the Cautious

Expected Utility theory in the context of choice under risk.15 However, in our setup, NUI has

different behavioral implications since we allow for ambiguity.

In the context of growing awareness, NUI has two behavioral consequences. First, the axiom

guarantees that the extended preference relation admits a MEU representation. Second, NUI

implies that all the events that correspond to the original states are unambiguous.

We can now formalize our main representation theorem.

Theorem 1. The following statements are equivalent:

(i) <F̂ satisfies axioms (A.1)-(A.5) and <F̂1
satisfies axioms (A.1)-(A.4) and NUI.

15Riella (2015) also uses the Negative Certainty Independence axiom in the context of choice under uncertainty. In
particular, he extends the main result of Cerreia-Vioglio et al. (2015) and obtains a single-prior expected multiple-
utility representation for incomplete preferences. The idea behind NUI is also similar to the Caution axiom of Gilboa
et al. (2010). In their setup, the Caution axiom connects two preferences, called objective and subjective rationality
relations. The former admits a MEU representation while the latter admits a representation à la Bewley (2002).
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(ii) There exist non-constant and affine functions U : ∆(C) → R and U1 : ∆(C1) → R, a prob-

ability measure µ ∈ ∆(S), and a nonempty, convex and compact set of probability measures

Π1 ⊆ ∆(S1) such that <F̂ is a SEU preference with (µ,U), <F̂1
is a MEU preference with

(Π1, U1), and <F̂1
is an unambiguity consistent extension of <F̂ . Moreover, U and U1 are

unique up to a positive linear transformation and µ and Π1 are unique.

Theorem 1 characterizes the SEU and MEU representations of <F̂ and <F̂1
and simultaneously

establishes that the extended preference <F̂1
preserves unambiguity of <F̂ as awareness grows.

Remark 1. Unambiguity Consistency has a stronger behavioral implication in the context of

genuine expansion. In this case, the event SR1 = ∪s∈SEs in S1 corresponds to the original state

space S; i.e., |SR1 | = |S|. Hence, the extended MEU preference admits an additive decomposition

across the unambiguous event SR1 and its complement SN1 . This observation is formally stated in

the following corollary.

Corollary 1. (Genuine expansion) Suppose |SR1 | = |S|. Let <F̂ be a SEU preference and <F̂1
be

a MEU preference with (Π1, U1) as in Theorem 1. Then, there are δ ∈ (0, 1), µ̃ ∈ ∆(S), and a

nonempty, convex and compact set Π̃ ⊂ ∆(SN1 ) such that for any f ∈ F̂1,

min
π∈Π1

∑
s1∈S1

U1

(
f(s1)

)
π(s1) = δ

(∑
s∈S

µ̃(s)U1

(
f(Es)

))
+ (1− δ)

(
min
π̃∈Π̃

∑
s1∈SN1

U1

(
f(s1)

)
π̃(s1)

)
.

Under Unambiguity Consistency, the DM who discovers a new consequence shifts (1−δ) of the

original probability mass to the set of newly discovered states, SN1 . In other words, (1 − δ) is the

subjective probability that one of the newly discovered states will occur. However, the DM might

not know how to “split” the probability mass (1− δ) across the newly discovered states in SN1 and

thus she may perceive the new states as ambiguous. However, in general Unambiguity Consistency

does not imply that <F̂1
is additively separable across the unambiguous events {Es}s∈S .

Notice that under Unambiguity Consistency, the DM solely inherits unambiguity property of

her original beliefs in response to growing awareness. The old and new beliefs might be unrelated.

To link µ and Π1 or U and U1, additional axioms are required.

To ensure that risk attitudes are not affected by awareness (i.e., U = U1 on ∆(C)), we impose

an axiom called Invariant Risk Preferences.16 It requires that the DM’s rankings of lotteries remain

the same at any awareness level. Formally,

(A.7) (Invariant Risk Preferences) For all p, q ∈ ∆(C), p <F̂ q if and only if p <F̂1
q.

By requiring that <F̂ and <F̂1
jointly satisfy (A.7), we get the following lemma.

Lemma 1. Let <F̂ be a SEU preference with (µ,U) and <F̂1
be a MEU preference with (Π1, U1).

If <F̂ and <F̂1
jointly satisfy Invariant Risk Preferences, then there are α, β ∈ R with α > 0 such

that U(p) = αU1(p) + β for any p ∈ ∆(C).

16The axiom was introduced by KV in their axiomatization of reverse Bayesianism.
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As a consequence, when <F̂ and <F̂1
jointly satisfy Invariant Risk Preferences, in addition to

the axioms of Theorem 1, then the extended MEU preference <F̂1
preserves both unambiguity and

the risk attitude of the initial SEU preference <F̂ .

4.3 MEU and Likelihood Consistency

In this subsection, we behaviorally characterize Likelihood Consistency. To this end, we impose

another axiom called Binary Awareness Consistency (BAC) in addition to a weak version of NUI.

Recall that, for any f, g ∈ F̂ and T ⊆ S, f−T g is the act in F̂ that returns g(s) in state s ∈ T
and f(s′) in state s′ ∈ S \ T . The BAC axioms directly connects the initial preference <F̂ and the

extended preference <F̂1
in the following way.

(A.8) (Binary Awareness Consistency (BAC)) For all p, p′, q, q′, r ∈ ∆(C) and all s ∈ S,

(p−s q) <F̂ (p′−s q
′) if and only if

(
r−SR1

(p−Es q)
)
<F̂1

(
r−SR1

(p′−Es q
′)
)
.

Roughly speaking, BAC requires that rankings over the old binary acts (p−s q) and (p′−s q
′)

are not affected by growing awareness. Since SR1 = S1 in the context of refined expansions,(
r−SR1

(p−Es q)
)

is a “projection” of the old act (p−s q) on F̂1. In the context of genuine expansions,

BAC is also reminiscent of the Sure-Thing Principle constrained to binary acts.17 By imposing

BAC, we can weaken NUI in the following way.

(A.9) (Weak Negative Unambiguity Independence (WNUI)) For all f, g ∈ F̂1, q ∈ ∆(C1)

and α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g,

and when g = p for some p ∈ ∆(C1),

f ∼F̂1
q if and only if αf + (1− α)g ∼F̂1

αq + (1− α)g.

The first part of WNUI is identical to the first part of NUI. Hence, the first part suggests that

the objective lottery q suffers more (or gains less) than the subjective act f from mixtures that

eliminate its objective appeal. However, the second part of WNUI requires that a subjective act

f and an objective lottery q equally suffer (or equally gain) when they are mixed with objective

lotteries.18

Our second representation result is stated below.

Theorem 2. The following statements are equivalent:

(i) <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4) and WNUI, and <F̂ and

<F̂1
jointly satisfy BAC.

17Moreover, BAC can be thought as a weak version of dynamic consistency or Bayesian updating.
18Note that the second part of WNUI is obtained from the second part of NUI by setting p = r when g = pEsr.
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(ii) There exist a non-constant and affine function U : ∆(C1) → R, a probability measure µ ∈
∆(S), and a nonempty, convex and compact set of probability measures Π1 ⊆ ∆(S1) such

that <F̂ is a SEU preference with (µ,U), <F̂1
is a MEU preference with (Π1, U), and <F̂1

is a likelihood consistent extension of <F̂ . Moreover, U is unique up to a positive linear

transformation and µ and Π1 are unique.

Theorem 2 characterizes the representations (1) and (2) with U = U1 on ∆(C), and simulta-

neously establishes that <F̂1
is a likelihood consistent extension of <F̂ .

Remark 2. Theorem 2 shows that BAC implies Invariant Risk Preferences. This is because BAC

requires that the rankings over old acts including constant acts are preserved by the extended

preference.19 Moreover, if all the newly discovered states are unambiguous, Theorem 2 provides an

alternative foundation of reverse Bayesianism of Karni and Vierø (2013, Theorems 1-2).20

Interestingly, depending on the type of state space expansion, Theorem 2 might have different

implications about Unambiguity Consistency. For example, under refined expansions Theorem 2

also characterizes Unambiguity Consistency.

Corollary 2. (Refined expansion) Suppose that S1 = SR1 . Let <F̂ be a SEU preference with (µ,U)

and <F̂1
be a MEU preference with (Π1, U) as in Theorem 2. Then <F̂1

is an unambiguity and

likelihood consistent extension of <F̂ , i.e., for all s ∈ S and all π, π̃ ∈ Π1,

(8) µ(s) = π
(
Es
)

= π̃
(
Es
)
.

Therefore, in the context of refined expansions, the extended MEU preference inherits all the

properties of the initial SEU preferences, including the DM’s old beliefs as well as her old risk

attitude. However, under genuine expansions the extended preference <F̂1
in Theorem 2 is not

necessarily unambiguity consistent. The following corollary of Theorem 2 shows that events in

{Es}s∈S (even SR1 =
⋃
s∈S Es) are possibly ambiguous.

Corollary 3. (Genuine expansion) Suppose that |SR1 | = |S|. Let <F̂ be a SEU preference with

(µ,U) and <F̂1
be a MEU preference with (Π1, U) as in Theorem 2. Then there is a set [δ, δ]× Π̃ ⊂

[0, 1]×∆(SN1 ) such that for any f ∈ F̂1,

min
π∈Π1

∑
s1∈S1

U
(
f(s1)

)
π(s1) = min

(δ,π̃)∈[δ,δ]×Π̃

{
δ
∑
s∈S

µ(s)U
(
f(s)

)
+ (1− δ)

∑
s1∈SN1

U
(
f(s1)

)
π̃(s1)

}
.21

19A similar result is obtained by Dominiak and Tserenjigmid (2018) for SEU preferences in the context of reverse
Bayesianism of Karni and Vierø (2013).

20Karni and Vierø (2013) require two axioms in addition to SEU axioms; Invariant Risk Preferences and Projection
Consistency in the context of discovering acts and Awareness Consistency in the context of discovering consequences.
Our BAC is weaker than both Awareness Consistency and Projection Consistency.

21Technically, δ = δ is allowed and in this case, we obtain the representation in Corollary 1. However, when δ 6= δ
Unambiguity Consistency is violated.
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We conclude this section by summarizing our characterization results in Table 4. Unambiguity

Consistency is characterized in Theorem 1 by NUI. Likelihood Consistency is characterized in

Theorem 2 by WNUI and BAC. Since Likelihood Consistency implies Unambiguity Consistency

under refined expansions, Theorem 2 also characterizes both consistency notions. Finally, Theorems

1 and 2 characterize Unambiguity and Likelihood Consistency by NUI and BAC in the context of

genuine expansions.

refined expansion genuine expansion

Unambiguity Consistency Theorem 1 (NUI) Theorem 1 (NUI)

Likelihood Consistency Theorem 2 (WNUI+BAC) Theorem 2 (WNUI+BAC)

Unambiguity and Likelihood Theorem 2 (WNUI+BAC) Theorems 1, 2 (NUI+BAC)

Table 4: Summary of characterization results

4.4 Dynamic Consistency and Rectangularity

In this section, we discuss the relationships between dynamic consistency and our consistency

notions. For SEU preferences, it is known that dynamic consistency is equivalent to Bayesian up-

dating (see Epstein and Breton, 1993; Ghirardato, 2002). However, for MEU preferences, dynamic

consistency is equivalent to rectangularity of the set of priors (see Epstein and Schneider, 2003).

Let us first define dynamic consistency and rectangularity in our context. Let P be a partition

of S and P1 be the partition of S1 such that P1 ≡ {E(P )}P∈P ∪ {SN1 } where E(P ) =
⋃
s∈P Es.

Let <F̂1
be the unconditional MEU preference with (Π1, U), and for each P1 ∈ P1, let <P1

F̂1
be

the conditional MEU preference with (ΠP1 , U).22 Then we say that the MEU preferences <F̂1
and

{<P1

F̂1
}P1∈P1 satisfy dynamic consistency if for any P1 ∈ P1 and f, g, h ∈ F̂1, fP1h <F̂1

gP1h if and

only if f <P1

F̂1
g. By the result of Epstein and Schneider (2003), dynamic consistency is satisfied if

and only if Π1 is P1-rectangular ; i.e., Π1 satisfies the following recursivity property:

(9) Π1 =
{ ∑
P1∈P1

π′1(P1) · πP1 | π′1 ∈ Π1 and πP ′1 ∈ ΠP ′1
for each P ′1 ∈ P1

}
.

In this section, since the initial preference relation is SEU, we assume that P = {{s}}s∈S and

P1 = {Es}s∈S ∪ {SN1 }. It turns out that the relationship between our consistency notions and

rectangularity varies with the type of state space expansion. In the context of refined expansion,

the joint assumption of Unambiguity and Likelihood Consistency is not sufficient for Π1 to be P1-

rectangular. The reason is that rectangularity requires the unconditional MEU preference to be

additively separable across the events in P1 in the case of refined expansion as formalized below.

However, additive-separability is not guaranteed by Unambiguity and Likelihood Consistency.

22ΠP1 is the Full-Bayesian update of Π1; i.e., ΠP1 = {πP1 ∈ ∆(S1)|πP1 is the Bayesian update of some π ∈ Π1}.
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Corollary 4 (Refined expansion). Suppose S1 = SR1 . If <F̂1
is a MEU preference with (Π1, U)

and is an unambiguous (and/or likelihood) consistent extension of <F̂ , then Π1 is P1-rectangular

if and only if <F̂1
is P1-additive-separable; i.e.,

min
π∈Π1

{
∑
s1∈S1

U(f(s1))π(s1)} =
∑
P1∈P1

min
π∈Π1

{
∑
s∈P1

U(f(s1))π(s1)}.

For genuine expansions, each of the two consistency notions individually implies rectangularity.

Corollary 5 (Genuine expansion). Suppose |S| = |SR1 |. If <F̂1
is a MEU preference with (Π1, U)

and is an unambiguous (or likelihood) consistent extension of <F̂ , then Π1 is P1-rectangular.

In this case, Unambiguity Consistency implies additive-separability, hence, rectangularity.

However, Likelihood Consistency does not imply additive-separability but yet implies rectangu-

larity (see the representation in Corollary 3).

5 Allowing for Initial Ambiguity Aversion

So far we have focused on a situation in which the DM’s preferences evolve from SEU preferences

to MEU preferences after learning a new discovery. The key insight from the previous sections is to

identify and characterize a new source of ambiguity. A natural next step is to ask how does the DM

react to another discovery when her preference is already MEU. To this end, this section focuses

on situations where both the initial and extended preferences, <F̂ and <F̂1
, are MEU preferences.

The main objective is then to extend our two consistency notions in this more general environment

and obtain characterization results that generalize Theorems 1 and 2. The new results illustrate

that our framework can be extended to settings with more than two periods, since any consecutive

two periods can be captured by our framework.23

Throughout this section, we assume that the initial preference <F̂ is a MEU preference with

(Π, U) and the extended preference <F̂1
is also a MEU preference with (Π1, U1). The initial pref-

erence relation here admits two different interpretations. In the first and main interpretation, the

initial preference <F̂ is a consequence of an evolution of another SEU preference (as characterized

in Section 4). In this case, we study how the DM’s preferences evolve after a second discovery. In

the second interpretation, the initial preference relation represents the DM’s behavior before any

discovery is made and the DM’s preference is ambiguity averse for different reasons (e.g., the DM

is ambiguity averse due to unknown probabilities as in the Ellsberg experiment). In this case, we

study a coexistence of two different types of ambiguity.

Our first task is to extend Unambiguity Consistency and Likelihood Consistency by connecting

the initial MEU preference <F̂ with (Π, U) and the extended MEU preference <F̂1
with (Π1, U1).

Indeed, we mostly focus on connecting the set of priors Π and Π1. We then discuss dynamic

consistency and rectangularity. We start with the extension of Likelihood Consistency.

23Indeed, modeling awareness in the context of intertemporal choice is nontrivial and it requires a separate treatment
(see Vierø (2017)). Combining such an extension with ambiguity is beyond the scope of the current paper.
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5.1 Likelihood Consistency and Reverse Full-Bayesianism

In KV, both the initial and extended preferences are SEU and the initial prior is the Bayesian update

of the extended prior. Hence the evolution of SEU beliefs in KV is called reverse Bayesianism.

In this subsection, we define and characterize an evolution of MEU preferences called reverse full-

Bayesianism. It is an extension of reverse Bayesianism to MEU preferences according to which the

initial set of priors is the full-Bayesian (i.e., prior-by-prior) update of the extended set of priors.

Definition 5 (Reverse Full-Bayesianism). Let <F̂ be a MEU preference with (Π, U) and <F̂1

be a MEU preference with (Π1, U1). Then, <F̂1
is said to be a reverse full-Bayesian extension

of <F̂ to F̂1 if

(10) Π =

{
π ∈ ∆(S)

∣∣∣∃π1 ∈ Π1 such that for any s, s′ ∈ S, π(s)

π(s′)
=
π1(Es)

π1(Es′)

}
.

Under reverse full-Bayesianism, the DM extends her old beliefs Π on S to new beliefs Π1 on S1

in such a way that her new beliefs maintain - prior by prior - the relative likelihoods on S of her old

beliefs. Hence, if the initial preference is SEU (i.e., Π is singleton), then reverse full-Bayesianism is

equivalent to Likelihood Consistency. Indeed, when both the initial and extended preferences are

SEU, we obtain the reverse Bayesianism of KV.

To characterize reverse full-Bayesianism, we impose two axioms that connect the initial pref-

erence <F̂ and the extended preference <F̂1
. The first axiom, Certainty Equivalence Consistency

(CEC), connects the initial preference <F̂ and the extended preference <F̂1
by requiring that cer-

tainty equivalences of old acts do not change after a discovery. Recall that for any f ∈ F̂ and

g ∈ F̂1, we denote an act in F̂1 that returns f(s) for each states1 ∈ Es where s ∈ S and g otherwise

by (f(s)Es)s∈S ∪ g. Keeping this notation in mind, we can formalize CEC.

(A.10) (Certainty Equivalence Consistency (CEC)) For any f ∈ F̂ and p ∈ ∆(C),

f ∼F̂ p implies (f(s)Es)s∈S ∪ p ∼F̂1
p.

In words, p is essentially the certainty equivalent of an old act f in F̂ . Then p is still the

certainty equivalent of the old act (f(s)Es)s∈S ∪ p in F̂1 that returns f on SR1 and p otherwise.

(A.11) (Negative Certainty Equivalence Independence (NCEI)) For any f ∈ F̂ and p, q ∈
∆(C), if f(s) �F̂ q for each s ∈ S or q �F̂ f(s) for each s ∈ S, then

f ∼F̂ p implies (f(s)Es)s∈S ∪ q %F̂1
pE(S)q.

The idea behind NCEI is similar to NUI. Roughly speaking, NCEI suggests that the objective lottery

p, which is ambiguity free, suffers more (or gains less) than the subjective act f from “composition”

(or a projection that makes f and p composite acts) that eliminates its objective appeal. However,

note that NCEI imposes the above property only when q dominates (or is dominated by) f .
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In the context of refined extensions (i.e., S1 = SR1 ), q in NCEI becomes redundant and CEC

implies NCEI. However, CEC and NCEI are independent in general.24

We now can characterize the theory of reverse full-Bayesianism.

Theorem 3. The initial preference relation %F̂ is a MEU preference with (Π, U) and the extended

preference relation %F̂1
is a MEU preference with (Π1, U1). The preferences jointly satisfy CEC

and NCEI if and only if %F̂1
is a reverse full-Bayesian extension of <F̂ and there are α, β ∈ R

with α > 0 such that U(p) = αU1(p) + β for any p ∈ ∆(C).

Theorem 3 shows that CEC and NCEI characterize reverse full-Bayesiansim. Just like Theorem

2, CEC also requires the initial and extended risk preferences to be the same. Hence, Theorem 3

extends Theorem 2.

5.2 Partition-Dependent Unambiguity Consistency

The idea behind our consistency notions is that the extended preference relation inherits certain

structures from the initial preference relation. Unambiguity Consistency requires that the extended

MEU preferences inherit unambiguity of old states. To extend Unambiguity Consistency to this

more general setting with two MEU preferences, we fix a partition P of S and assume that each

event P ∈ P is %F̂ -unambiguous. This assumption allows for two interpretations. First, when %F̂

is a SEU preference as in the previous section, P is the partition that consists of only singleton

sets; i.e., P = {{s}}s∈S . Second, P is the partition that is obtained from a previous discovery

under Unambiguity Consistency.25 Given P, let P1 ≡ {E(P )}P∈P ∪ {SN1 }. Then our extension

of Unambiguity Consistency will require that any event in P1 ∈ P1 is %F̂1
-unambiguous. For

simplicity, we introduce the following definitions.

Definition 6 (E-unambiguity). For any partition E of S, a MEU preference relation < with (Π, U)

is E-unambiguous if for any event E ∈ E and priors π, π′ ∈ Π, π(E) = π′(E).

Definition 7 (E-Independence). For any partition E of S, a preference relation % on F̂ satisfies

E-Independence if for any E ∈ E and any f ∈ F̂ , p, q, r ∈ ∆(C), and α ∈ (0, 1], f ∼ q if and only

if αf + (1− α)(pE r) ∼ α q + (1− α)(pE r).

We now can formally define the extension of Unambiguity Consistency.

Definition 8 (PD-Unambiguity Consistency). Suppose the initial preference relation <F̂ is

a P-unambiguous MEU preference and the extended preference relation <F̂1
is a MEU preference

with (Π1, U1). Then, <F̂1
is said to be a partition-dependent (PD) unambiguity consistent

extension of <F̂ to F̂1 if <F̂1
is P1-unambiguous where P1 = {E(P )}P∈P ∪ {SN1 }.

24Pires (2002) characterizes full-Bayesian updating in standard environments with fixed awareness. Although her
axioms and our axioms are imposed on different objects, there are some similarities between the main characterizing
axiom of Pires (2002) and our CEC. However, since CEC is not sufficient for reverse full-Bayesianism in general and
we study growing awareness, her result does not imply our Theorem 3.

25Recall, under Unambiguity Consistency, {Es}s∈S ∪ {SN1 } is the unambiguous partition according to %F̂1
.
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PD-Unambiguity Consistency is characterized as follows.

Proposition 1. Suppose the initial and extended preference relations <F̂ and %F̂1
are MEU pref-

erences. Then <F̂ satisfies P-Independence and <F̂1
satisfies P1-Independence if and only if <F̂ is

P-unambiguous and <F̂1
is a PD-unambiguity consistent extension of <F̂ .

Proposition 1 shows that E-Independence characterizes PD-Unambiguity Consistency. Note

that P1-Independence is equivalent to the second part of NUI. Hence, Proposition 1 extends The-

orem 1 to the case where both the initial and extended preferences are MEU.

5.3 Dynamic Consistency and Rectangularity

The objective of Sections 5.1-2 is to illustrate that Likelihood Consistency and Unambiguity Consis-

tency can be extended to the setting where one MEU preference evolves to another MEU preference.

In this section, we study rectangularity since it ensures dynamic consistency in MEU preferences,

which is convenient for economic applications. Therefore, we characterize the cases in which in

which the initial set of priors Π is P-rectangular and the new set of priors Π1 is P1-rectangular.

It turns out that rectangularity is characterized by the following straightforward weakening of

Savage’s Sure-Thing Principle.26

Definition 9 (E-Separability). For any partition E of S, a preference relation % on F̂ satisfies

E-Separability if for any E ∈ E and f, g, h, h′ ∈ F̂ , fEh ∼ gEh if and only if fEh′ ∼ gEh′.

We can now state our first result in which rectangularity and reverse full-Bayesianism are

characterized simultaneously.

Theorem 4. Suppose the initial preference relation %F̂ is a MEU preference with (Π, U) and the

extended preference relation %F̂1
is a MEU preference with (Π1, U1). The following are equivalent.

(i) %F̂ satisfies P-Separability, %F̂1
satisfies P1-Separability, and %F̂ and %F̂1

jointly satisfy

CEC and NCEI;

(ii) Π is P-rectangular, Π1 is P1-rectangular, %F̂ is a reverse full-Bayesian extension of %F̂1
, and

there are α, β with α > 0 such that U1(p) = αU(p) + β for any p ∈ ∆(C).

Similar to Corollary 5, P1-rectangularity does not require additive-separability under reverse

full-Bayesianism as illustrated below.

Corollary 6. (Genuine expansion) Suppose that |SR1 | = |S|. Let <F̂ be a MEU preference

with (Π, U) and <F̂1
be a MEU preference with (Π1, U) as in Theorem 4. Then there is a

26Epstein and Schneider (2003) characterize rectangularity by dynamic consistency, which requires a consistency
condition between the unconditional and conditional preference relations. We do not use the conditional preferences
in this paper. Instead, we directly characterize rectangularity of Π (resp., Π1) by an axiom on %F̂ (resp., %F̂1

).
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set [δ, δ] ×
(∏

P1∈P1
ΠP1 × ΠN

)
⊂ [0, 1] ×

∏
P1∈P1

∆(P1) × ∆(SN1 ) such that for any f ∈ F̂1,

minπ∈Π1

∑
s1∈S1

U
(
f(s1)

)
π(s1) is equal to

min
δ∈[δ,δ],πP1∈ΠP1 ∀P1∈P1,πN∈ΠN

{
δ
∑
P1∈P1

π(P1)
∑
s1∈P1

U
(
f(s1)

)
πP1(s1) + (1− δ)

∑
s1∈SN1

U
(
f(s1)

)
πN (s1)

}
.

In the next result, we characterize rectangularity and PD-Unambiguity Consistency simulta-

neously.

Proposition 2. Suppose the initial and extended preference relations <F̂ and %F̂1
are MEU pref-

erences. The following are equivalent.

(i) %F̂ satisfies P-Separability and P-Independence and %F̂1
satisfies P1-Separability and P1-

Independence;

(ii) Π is P-rectangular, Π1 is P1-rectangular, <F̂ is P-unambiguous, and %F̂1
is a PD-unambiguous

extension of %F̂ ;

(iii) %F̂ is P-additive-separable and %F̂1
is P1-additive-separable.

Unlike in Theorem 4, P1-rectangularity under PD-Unambiguity Consistency requires additive

separability.

6 Parametric MEU for Refined Expansions

In this section, we go back to our initial setting in which the initial preference relation is a SEU pref-

erence and study a parametric version of the extended MEU preference that satisfies Unambiguity

and Likelihood Consistency. The suggested parametric MEU model makes our theory tractable

for broad economic applications and empirical studies.27 For simplicity, we focus on refined expan-

sions in which S1 = SR1 =
⋃
s∈S Es. Under Unambiguity Consistency and Likelihood Consistency,

the extended MEU preference <F̂1
inherits the old beliefs, i.e., µ(s) = π(Es) for each s ∈ S and

π ∈ Π1.28 We have argued that the DM perceives ambiguity because she may not know how to

“split” her old belief µ(s) across the newly discovered states in Es. In this section, we suggest the

following procedural way to “split” µ(s).

Suppose that the DM considers a probability measure ηs ∈ ∆(Es) on the new states in Es.

However, the DM is not confident that ηs “truthfully” describes the likelihoods of the newly discov-

ered states. Therefore, the DM might distort ηs by a parameter αs ∈ [0, 1]. For a given αs ∈ [0, 1]

and ηs ∈ ∆(Es), the DM forms beliefs over Es defined as a convex mixture between ηs and the set

27Parametric versions of MEU model have been applied to asset pricing (Epstein and Wang, 1994), search theory
(Nishimura and Ozaki, 2004), insurance models (Carlier et al., 2003), and mechanism design (Bose and Daripa, 2009).

28Recall that Es is the event corresponding to the old state s ∈ S. In the KV approach, Es = {s1 ∈ S1 : ∃c ∈
C s.t. s1 = (s, c)}.
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of all possible probability measures in ∆(Es). That is,

(11) Π
(ηs, αs)
Es

= αs{ηs}+ (1− αs)∆(Es).

The parameter αs might be interpreted as the DM’s degree of confidence in the probability

measure ηs. When αs = 1, the DM is confident that ηs accurately represents the likelihoods of the

new states. When αs = 0, she is not confident at all and her beliefs are represented by the set of

all priors ∆(Es).
29

Recall our patient example and Table 2. Suppose that the patient is told by her doctor

that the probability that the novel treatment N is successful is 0.7. Therefore, she considers

ηs1 = (η(s1
1), η(s1

5)) = (0.7, 0.3) as a probability measure over Es1 = {s1
1, s

1
5}. When her degree of

confidence in ηs1 is α1, her beliefs over Es1 are

(12) Π
(η1, α1)
Es1

= α1 η1 + (1− α1) ∆(Es1) =
{(
π(s1

1), π(s1
5)
)

: π(s1
1) ∈ [0.7α1, 1− 0.3α1]

}
.

We allow ηs to depend on Es as well as the DM’s degree of confidence αs in ηs to vary across

s ∈ S. In other words, different degrees of confidence αs might reflect her perception that each

original state s ∈ S is affected differently by the discovery of f̄ . For example, suppose that the

patient also considers η4 = (0.7, 0.3) on Es4 . However, the patient might be more cautious about

success of the novel treatment f̄ when she considers event Es4 , in which the standard treatments

f1 and f2 fail, as compared to event Es1 in which f1 and f2 are successful. Therefore, her degree

of confidence α1 might be larger than α4.

Our parametric MEU representation of the extended preference <F̂1
takes the following form.

For a given parameter vector {(ηs, αs)}s∈S ∈
∏
s∈S (∆(Es)× [0, 1]), each act f ∈ F̂1 is evaluated

via

(13) V (f) =
∑
s∈S

µ(s)
(

min
π∈Π

(ηs,αs)
Es

∑
s1∈Es

U
(
f(s1)

)
π(s1)

)
,

where the set of priors Π
(ηs, αs)
Es

for each s ∈ S is defined in Equation (11). This parametric MEU

preference satisfies both Unambiguity Consistency and Likelihood Consistency. Moreover, the

representation admits an additive decomposition across the unambiguous events {Es}s∈S . Theorem

5 in Appendix B axiomatically characterizes this parametric MEU representation by BAC and a

stronger version of our key axiom, NUI.

6.1 Parametric MEU for Genuine Expansions

Let us conclude this section by briefly discussing a parametric MEU representation in the context of

genuine expansions. Similar to Theorem 5 in Appendix B, we can obtain the following parametric

29A similar procedure has been studied in the literature. For example, Kopylov (2016) axiomatizes a MEU repre-
sentation with a set of priors Π1 = αη + (1 − α)∆(S1), where η ∈ ∆(S1) for a given state space S1. In our setting,
we have αs and ηs for each event Es ⊂ S1 and allow for αs 6= αs′ .
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representation: there exist δ, α ∈ [0, 1] and η ∈ ∆
(
SN1
)

such that every act f ∈ F̂1 is evaluated via

the functional:

V (f) = δ
(∑
s∈S

µ(s)U(f(Es))
)

+ (1− δ)
(

min
π∈Π(η, α)

∑
s1∈SN1

U
(
f(s1)

)
π(s1)

)
,

where Π(η, α) = α {η}+ (1− α) ∆
(
SN1
)
.

7 Related Literature

There are two main approaches to modelling unawareness and growing awareness in the economic

literature: the preference-based approach and the epistemic approach.30 The preference-based

approach, which we follow, assumes an exogenously given unawareness structure and studies how

unawareness and growing awareness may affect choice under uncertainty. The first rigorous study

in this context is Karni and Vierø (2013). KV develop the theory of reverse Bayesianism that

characterizes a likelihood-consistent evolution of SEU preferences under growing awareness due to

discoveries of new acts, new consequences, or links between them.31Karni and Vierø (2015) extend

their reverse Bayesianism to probabilistically sophisticated preferences of Machina and Schmeidler

(1992, 1995). The above two papers and in fact most of the literature on choice under growing

awareness focus on preferences with probabilistic beliefs. Our paper goes beyond this paradigm since

ambiguity averse behavior is inconsistent with probabilistically sophisticated preferences. In fact,

we illustrate that growing awareness of states is a novel source of ambiguity and ambiguity averse

behavior. We also introduce and characterize two consistency notions, Unambiguity Consistency

and Likelihood Consistency, and reverse full-Bayesianism, which is an extension of the reverse

Bayesianism of KV to MEU preferences.32

Grant et al. (2018) study ambiguity under growing awareness from a different prospective by

developing a model of learning under unawareness. In their model, a DM has incomplete information

about the structure of the state space. She learns about the unknown states through sequential

experimentation. At the initial stage, the DM is completely ignorant and her beliefs are represented

by the set of all priors. The DM’s beliefs are successively updated while discovering new acts and

new consequences. Grant et al. (2018) and our paper complement each other. We axiomatically

characterize two consistency notions for belief updating under growing awareness and ambiguity

while Grant et al. (2018) study the underlying stochastic process of learning and belief updating

using the imprecise Dirichlet process.

30The goal of the epistemic approach is to develop formal models of unawareness and to study logical properties
of unawareness. Schipper (2014a,b) provide comprehensive surveys of the literature on the epistemic approach to
unawareness.

31In a recent study, Chakravarty et al. (2019) apply the theory of reverse Bayesianism of KV to explore the
implications of unawareness and growing awareness for the economic analysis of tort law.

32Hayashi (2012) studies the evolution of subjective probabilities from the point of view of dynamic behavior. In
his setup, the state space expansion follows a product structure. By imposing a form of dynamic consistency between
choices made before and after a state space expansion, he characterizes a consistent evolution of beliefs in the sense
that the marginal distribution of the new belief induced over the old state space coincides with the old belief.
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Our theory and the models mentioned above preclude awareness of unawareness. Karni and

Vierø (2017) provide an extension of reverse Bayesianism to situations in which a DM is aware

that she is unaware of some consequences. That is, the DM anticipates discovery of unknown

consequences, and assigns utilities to unspecified consequences even if such consequences may not

even exist. Under the assumption of SEU preferences, they characterize the principle of reverse

Bayesianism in this context.33

There is another strand of literature that focuses on situations where a DM has a limited

understanding of a given state space or a feasible set of acts rather than being unaware of them.

The primary goal is to provide an alternative representation of preferences but not to characterize

a consistent evolution of preferences under, e.g., improving understating of the choice environment.

Ahn and Ergin (2010) derive a partition-dependent SEU representation in which the DM’s

beliefs depend on descriptions of states, which are represented by partitions of a given state space.

Although the DM may receive better descriptions through refining the original partition, the refine-

ment process is tacit and the new preferences are not linked to the old preferences under coarser

partitions. Moreover, the SEU form of preferences does not change as the DM’s understanding

improves.

Lehrer and Teper (2014) study rules that extend restricted complete SEU preferences (defined

over a restricted set of acts) to unrestricted but incomplete preferences (defined over the entire

domain of acts). Under the so-called prudent rule, the extended preferences are incomplete à la

Bewley (2002). They also discuss how to complete the Bewley representation and, under a modified

prudent rule, the completion takes a restricted MEU form. Similar to us, Lehrer and Teper (2014)

allow preferences to change as the set of acts expands. Besides that, there are several substantial

differences from our approach. First, in their setup the evolution of beliefs is not addressed while

our theory characterizes consistent evolution of beliefs and tastes. Second, in their setup the state

space is intact. That is, although the set of acts expands, it does not affect the description of the

original states. Finally, the set of priors takes a particular form of complete ignorance and the

existence of such a set is not triggered by new discoveries per se. In particular, the set of priors is

induced by the initial preference relation; it is the set of all probability measures that rationalizes

the DM’s (original) preference over the restricted set of acts.

Another model that allows for ambiguity is Grant and Quiggin (2015). In their model, a

DM might be surprised by an unforeseen (monetary) consequence. A state space is augmented

by “surprise” states in which either an unfavorable consequence ranked below the worst possible

consequence or a favorable consequence ranked above the best possible consequence might arise.

They derive a representation of preferences that captures the DM’s aversion towards unfavorable

surprises and proneness towards favorable surprises. When surprise states are viewed as impossible,

preferences admit an expected uncertain utility representation of Gul and Pesendorfer (2014).

33Alon (2015) also derives a choice model in which the DM is aware of her unawareness. The DM’s unawareness is
represented by an imaginary, “unforeseen event,” extending the exogenous state space. While evaluating an act, the
imaginary event is associated with the worst possible consequence leading to the so-called worst-case expected utility
representation.
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A Appendix: Proofs

A.1 A Useful Lemma for Theorems 1-2

In Theorems 1-2, we need to show that <F̂1
admits a MEU representation. Since <F̂1

satisfies

(A.1)-(A.4), it is suffices to show that <F̂1
satisfies the following two key axioms of Gilboa and

Schmeidler (1989):

(A.12) (Certainty Independence) For all f, g ∈ F̂1, c ∈ C1, and α ∈ (0, 1], f <F̂1
g if and only if

αf + (1− α)c <F̂1
αg + (1− α)c.

(A.13) (Uncertainty Aversion) For all f, g ∈ F̂1, f <F̂1
g if and only if αf + (1 − α)g <F̂1

g for

all α ∈ (0, 1].

Lemma 2 shows that WNUI implies Certainty Independence and Uncertainty Aversion.

Lemma 2. If <F̂1
satisfies (A.1)-(A.4) and WNUI, then it satisfies (A.11)-(A.12).

Proof of Lemma 2. Suppose <F̂1
satisfies (A.1)-(A.4) and WNUI. First, we prove that Certainty

Independence is satisfied. Take any f, g ∈ F̂1, c ∈ C1, and α ∈ (0, 1] with f <F̂1
g. Moreover, take

a lottery q ∈ ∆(C1) such that g ∼F̂1
q. Weak NUI implies that for any α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)c <F̂1

αq + (1− α)c

and

g ∼F̂1
q if and only if αg + (1− α)c ∼F̂1

αq + (1− α)c.

Therefore, by Transitivity, f <F̂1
g implies αf + (1−α)c <F̂1

αg+ (1−α)c. The opposite direction

of Certainty Independence is obvious.

Second, we will prove that Uncertainty Aversion is satisfied. Take any f, g ∈ F̂1 and α ∈ (0, 1]

with f <F̂1
g. Moreover, take a lottery q ∈ ∆(C1) such that g ∼F̂1

q. Weak NUI implies that for

any α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g.

By Certainty Independence, αg + (1 − α)q ∼F̂1
αq + (1 − α)q = q. Therefore, by Transitivity,

if f <F̂1
q, then αf + (1 − α)g <F̂1

g. The opposite direction of Uncertainty Aversion is also

immediate. This completes the proof.

Since <F̂ satisfies axioms (A.1)-(A.5) and <F̂1
satisfies (A.1)-(A.4) and WNUI in Theorems

1-2, from now we assume that <F̂ has a SEU representation and <F̂1
has a MEU representation.

That is, there exist a non-constant and affine function U : ∆(C)→ R, and a probability measure µ

on S, such that <F̂ admits the representation (1) with (µ,U) and there exist a non-constant and

affine function U1 : ∆(C1) → R, a convex and compact set of probability measures Π1 ⊆ ∆(S1),

such that <F̂1
admits the representation (2) with (Π1, U1). The uniqueness of U , U1, µ, and Π1

are straightforward. Since the necessity parts of Theorems 1-2 are straightforward, we only prove

their sufficiency parts.
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A.2 Proof of Theorem 1

Suppose <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4) and NUI. By the dis-

cussion in Section A.1, suppose <F̂ has a SEU representation with (µ,U) and <F̂1
has a MEU

representation with (Π1, U1). Without loss of generality, let U1(b) = 1 and U1(w) = 0 where b and

w are the best and worst consequences in C1, respectively.

Finally, we shall prove that <F̂1
is an unambiguity consistent extension of <F̂ to F̂1. Let us fix

s ∈ S. NUI implies that for all f, g ∈ F̂1 with g = pEsw for some p ∈ ∆(C1) and for all q ∈ ∆(C1)

and α ∈ [0, 1], if f ∼F̂1
q, then αf+(1−α)g ∼F̂1

αq+(1−α)g. In terms of the MEU representation

(2) for <F̂1
, if

(14) min
π∈Π1

∑
s1∈S1

U1

(
f(s1)

)
π(s1) = U1(q), then

(15)

min
π∈Π1

∑
s1∈S1

(
αU1

(
f(s1)

)
+ (1− α)U1

(
g(s1)

))
π(s1) = αU1(q) + (1− α) min

π∈Π1

∑
s1∈S1

U1

(
g(s1)

)
π(s1).

Since g = pEsw, Equation (15) is equivalent to

min
π∈Π1

{
α
∑
s1∈S1

U1

(
f(s1)

)
π(s1) + (1− α)π(Es)U1(p)

}
= αU1(q) + (1− α) min

π∈Π1

{
π(Es)U1(p)

}
.

Therefore, by combining (14) and (15), we have that for any f ∈ F̂1, p ∈ ∆(C), and α ∈ [0, 1],

(16) min
π∈Π1

{
α
∑
s1∈S1

U1

(
f(s1)

)
π(s1) + (1− α)π(Es)U1(p)

}

= α min
π∈Π1

{ ∑
s1∈S1

U1

(
f(s1)

)
π(s1)

}
+ (1− α) min

π∈Π1

{
π(Es)

}
U1(p).

Let us now assume that α = 1
2 and f = q1Esp for some q1 ∈ ∆(C1). Then (16) is equivalent to

min
π∈Π1

{
π(Es)

}
U1(q1) + U1(p) = min

π∈Π1

{
π(Es)U1(q1) + (1− π(Es)U1(p))

}
+ min
π∈Π1

{
π(Es)

}
U1(p).

Suppose that U1(p) > U1(q1). Then the above equality is equivalent to

(17)

(
max
π∈Π1

{
π(Es)

}
− min
π∈Π1

{
π(Es)

})
U1(q1) =

(
max
π∈Π1

{
π(Es)

}
− min
π∈Π1

{
π(Es)

})
U1(p).

Since Equation (17) is satisfied for any q1, p ∈ ∆(C) with U1(p) > U1(q1), we have that

minπ∈Π1

{
π(Es)

}
= maxπ∈Π1

{
π(Es)

}
, i.e., Es is an unambiguous event.
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A.3 Proof of Theorem 2

Suppose <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4), and WNUI, and they

jointly satisfy BAC. By the discussion in Section A.1, suppose <F̂ has a SEU representation with

(µ,U) and <F̂1
has a SEU representation with (Π1, U1). Without loss of generality, let U(b) =

U1(b) = 1 and U(w) = U1(w) = 0 where b and w are the best and worst consequences in C,

respectively. We prove Theorem 2 in the following two steps.

Step 1: U = U1 on ∆(C).

For any p, p′ ∈ ∆(C), by BAC, we have (p−s p) <F̂ (p′−s p
′) if and only if

(
w−E(S)(p−Es p)

)
<F̂1(

w−E(S)(p
′
−Es p

′)
)
; equivalently,

U
(
p
)
≥ U

(
p′
)

if and only if min
π∈Π1

{π(E(S))}U1(p) ≥ min
π∈Π1

{π(E(S))}U1(p′) if and only if U1

(
p
)
≥ U1

(
q
)
.

Therefore, U = U1 on ∆(C), i.e, risk attitudes of <F̂ and <F̂1
are the same.

Step 2: <F̂1
is a likelihood consistent extension of <F̂ .

For any s ∈ S, p, q, p′ ∈ ∆(C), by BAC, we have

(p−s q) <F̂ (p′−s p
′) = p′ if and only if

(
p′−E(S)(p−Es q)

)
<F̂1

(
p′−E(S)(p

′
−Es p

′)
)

= p′;

equivalently,

(1− µ(s))U(p) + µ(s)U(q) = U
(
p′
)

if and only if

min
π∈Π1

{
π(E(S)\Es)U(p) + π

(
Es
)
U(q) + (1− E(S))U

(
p′
)}

= U(p′).

Therefore, we have for any s ∈ S and p, q ∈ ∆(C), (1− µ(s))U(p) + µ(s)U(q) is equal to

min
π∈Π1

{
π(E(S)\Es)U(p)+π(Es)U(q)+

(
1− π(E(S))

)(
(1− µ(s))U(p) + µ(s)U(q)

)}
.

Therefore, for any s ∈ S and p, q ∈ ∆(C),

min
π∈Π1

{(
π(Es)− π(E(S))µ(s)

)(
U(q)− U(p)

)}
= 0.

The above equation implies minπ∈Π1 {π(Es)− π(E(S))µ(s)} = 0 when U(p) < U(q) and

maxπ∈Π1 {π(Es)− π(E(S))µ(s)} = 0 when U(p) > U(q). Therefore, π(Es) = π(E(S))µ(s) for any

s ∈ S and π ∈ Π1.

A.4 Proof of Theorem 3

Suffiency. We prove the sufficiency part of Theorem 3 by six steps.

Step 1. There are α, β with α > 0 such that U1(p) = αU(p) + β for any p ∈ ∆(C).
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Take any f ∈ F̂ and p ∈ ∆(C) with f ∼F̂ p; equivalently,

(18) min
π∈Π

∑
s∈S

U
(
f(s)

)
π(s) = U(p).

By CEC, we have (f(s)Es)s∈S ∪ p ∼F̂1
p; equivalently,

(19) min
π1∈Π1

{
∑
s∈S

U1

(
f(s)

)
π1(Es) + (1−

∑
s∈S

π1(Es))U1(p)} = U1(p).

Let f(s) = q for some q ∈ ∆(C). Then U(p) = U(q) if and only if U1(p) = U1(q). Hence, there are

α, β with α > 0 such that U1(p) = αU(p) + β for any p ∈ ∆(C).

Step 2. For any extreme point π̄ of Π, there is π1 ∈ Π1 such that for any s ∈ S,

π̄(s) =
π1(Es)∑

s′∈S π1(Es′)
.

Take any extreme point π̄ in Π. There is f ∈ F̂ such that π̄ be the minimizer of (18) and

U(f(s)) 6= U(f(s′)) for any s, s′ ∈ S. Given f , let π̄1 be the minimizer of (19). Combining (18)

and (19), we have

(20)
∑
s∈S

U
(
f(s)

)(
π̄1(Es) + (1−

∑
s∈S

π̄1(Es))π̄(s)
)

=
∑
s∈S

U
(
f(s)

)
π̄(s).

We shall show that π̄1(Es) + (1−
∑

s∈S π̄1(Es))π̄(s) = π̄(s) for each s ∈ S. Take any s ∈ S and

take another act f ′ such that f ′(s′) = f(s′) for any s′ ∈ S \ {s} and |U(f ′(s))− U(f(s))| = ε > 0.

When ε is small enough, π̄ and π̄1 are still the minimizers of (18) and (19) for f ′. By (20), we will

have

(21)
∑
s∈S

U
(
f ′(s)

)(
π̄1(Es) + (1−

∑
s∈S

π̄1(Es))π̄(s)
)

=
∑
s∈S

U
(
f ′(s)

)
π̄(s).

Subtracting (21) from (20), we will have (U
(
f(s)

)
− U(f ′(s)))

(
π̄1(Es) + (1−

∑
s∈S π̄1(Es))π̄(s)−

π̄(s)
)

= 0. Hence, π̄1(Es) + (1−
∑

s∈S π1(Es))π̄(s) = π̄(s).

Notice that we just proved that π̄(s) = π̄1(Es)∑
s∈S π1(Es)

for any s ∈ S. Equivalently, for any extreme

point π ∈ Π, there is π1 ∈ Π1 such that

π̄(s)

π̄(s′)
=

π̄1(Es)

π̄1(Es′)
for all s, s′ ∈ S.(22)

Step 3. For any π ∈ Π, there is π1 ∈ Π1 such that for any s ∈ S,

π(s) =
π1(Es)∑

s′∈S π1(Es′)
.
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Take any π ∈ Π. Since Π is a convex set with finite extreme points, there are sets of extreme

points {πi}mi=1 in Π and strictly positive weights {αi}mi=1 such that π =
∑m

i=1 α
iπi and

∑m
i=1 α

i = 1.

By Step 2, there is a set {πi1}mi=1 in Π1 such that πi(s) =
πi1(Es)∑

s′∈S π
i
1(Es′ )

for each s ∈ S and i ≤ m.

We now show that there is a set of strictly positive weights {βi}mi=1 such that π(s) = π1(Es)∑
s′∈S π1(Es′ )

and
∑m

i=1 β
i = 1 where π1 =

∑m
i=1 β

iπi1. Let βi ≡ λ αi

πi1(E(S))
where λ ≡ 1∑m

i=1
αi

πi1(E(S))

. Then

π1(Es)∑
s′∈S π1(Es′)

=

∑m
i=1 β

iπi1(Es)∑
s′∈S

∑m
i=1 β

iπi1(Es′)
=

∑m
i=1 β

iπi1(Es)∑m
i=1 β

iπi1(E(S))

=

∑m
i=1 λ

αi

πi1(E(S))
πi1(Es)∑m

i=1 λ
αi

πi1(E(S))
πi1(E(S))

=
m∑
i=1

αi
πi1(Es)∑

s′∈S π
i
1(Es′)

=
m∑
i=1

αi πi(s) = π(s).

To state Step 4, some notations are necessary. Let S∗ ≡ S ∪ {s∗} and

Π∗ ≡ {π∗ ∈ ∆(S∗)|∃π1 ∈ Π1 such that π∗(s) = π1(Es) for all s ∈ S and π∗(s∗) = π1(SN1 )}.

Step 3 proves that Π ⊆ Π∗|S . Hence, the remainder of this proof shows that Π∗|S ⊆ Π.

Step 4. If Π∗|S \Π 6= ∅, then there is an extreme point π̄∗ of Π∗ such that π̄∗∗ = ( π∗(s)∑
s′∈S π

∗(s′))s∈S

is an extreme point of Π∗|S and π∗∗ 6∈ Π.

Take any extreme point π of Π∗|S such that π 6∈ Π. Suppose that π = π∗|S for some π∗ ∈ Π∗.

If π∗ is an extreme point of Π∗, then we obtain the desired result. If π∗ is not an extreme point of

Π∗, then there are sets of extreme points {πi}mi=1 in Π∗ and strictly positive weights {βi}mi=1 such

that π∗ =
∑m

i=1 β
iπi and

∑m
i=1 β

i = 1. By essentially identical argument in the proof of Step 3, we

have π = π∗|S =
∑m

i=1 α
iπi|S where αi = βi πi(S)∑m

j=1 β
j πj(S)

.34 However, π =
∑m

i=1 α
iπi|S contradicts

the fact that π is an extreme point of Π∗|S .

Step 5. Take any extreme point π̄∗ of Π∗. There are f ∈ F̂ and q ∈ ∆(C) such that π̄∗ is the

solution to minπ∗∈Π∗{
∑

s∈S U
(
f(s)

)
π∗(s) + U(q)π∗(s∗)} where either f(s) �F̂ q for each s ∈ S,

q �F̂ f(s) for each s ∈ S, or f ∼F̂ q.

Indeed, there are f ′ ∈ F̂ and q ∈ ∆(C) such that π̄∗ ∈ arg minπ∗∈Π∗{
∑

s∈S U
(
f ′(s)

)
π∗(s) +

U(q)π∗(s∗)} and U(f ′(s)) 6= U(f ′(s′)) and U(f ′(s)) 6= U(q) for any s, s′ ∈ S. If either f ′(s) �F̂ q

for each s ∈ S or q �F̂ f ′(s) for each s ∈ S, then we obtain the desired result. Suppose now

maxs∈S U(f ′(s)) > U(q) > mins∈S U(f ′(s)). Let fλ be an act in F̂ such that fλ(s) = λ f ′(s) + (1−
λ) q when U(f ′(s)) > U(q) and fλ(s) = f ′(s) when U(f ′(s)) < U(q). Since f ′ = f1 �F̂ q �F̂ f0,

there is λ∗ such that fλ∗ ∼F̂ q. Since fλ∗ and f ′ are comonotonic, π̄∗ is also the minimizer of

minπ∗∈Π∗{
∑

s∈S U
(
fλ∗(s)

)
π∗(s) + U(q)π∗(s∗)}.

Step 6. Π∗|S = Π.

34In the proof of Step 3, we construct {βi}mi=1 given {αi}mi=1. It is easy to notice that {αi}mi=1 can be found from
{βi}mi=1 instead.
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By way of contradiction, suppose Π∗|S \Π 6= ∅. By Step 4, there is an extreme point π̄∗ of Π∗

such that π̄∗∗ = ( π∗(s)∑
s′∈S π

∗(s′))s∈S is an extreme point of Π∗|S and π∗∗ 6∈ Π.

Step 6.1. By Step 5, there are f ∈ F̂ and q ∈ ∆(C) such that π̄∗ ∈ arg minπ∗∈Π∗{
∑

s∈S U
(
f(s)

)
π∗(s)+

U(q)π∗(s∗)} and either f(s) �F̂ q for each s ∈ S, q �F̂ f(s) for each s ∈ S, or f ∼F̂ q. If f ∼F̂ q,
then by repeating Step 2, we can prove that

π̄(s) =
π̄∗(s)∑

s′∈S π̄
∗(s′)

,

where π̄ is the minimizer of (18) for f . We now assume that either f(s) �F̂ q for each s ∈ S or

q �F̂ f(s) for each s ∈ S.

Take p ∈ ∆(C) such that f ∼F̂ p. By NCEI, we have (f(s)Es)s∈S∪q %F̂1
pE(S)q; equivalently,∑

s∈S
U
(
f(s)

)
π̄∗(s) + (1−

∑
s∈S

π̄∗(s))U(q) ≥ (
∑
s∈S

π̃∗(s))U(p) + (1−
∑
s∈S

π̃∗(s))U(q),

where π̃∗ minimizes minπ∗∈Π∗{(
∑

s∈S π
∗(s))U(p) + (1−

∑
s∈S π

∗(s))U(q)}.

When q �F̂ f(s) for each s ∈ S, we have
∑

s∈S π̃
∗(s) =

∑
s∈S π̄

∗(s) = minπ∗∈Π∗
∑

s∈S π
∗(s).

Hence, we will have ∑
s∈S

U
(
f(s)

) π̄∗(s)∑
s∈S π̄

∗(s)
≥ U(p).

When f(s) �F̂ q for each s ∈ S, we have
∑

s∈S π̃
∗(s) =

∑
s∈S π̄

∗(s) = maxπ∗∈Π∗
∑

s∈S π
∗(s).

Hence, we will have ∑
s∈S

U
(
f(s)

) π̄∗(s)∑
s∈S π̄

∗(s)
≥ U(p).

In each case, since f ∼F̂ p is equivalent to minπ∈Π
∑

s∈S U
(
f(s)

)
π(s) = U(p), we will have

(23)
∑
s∈S

U
(
f(s)

) π̄∗(s)∑
s∈S π̄

∗(s)
≥ min

π∈Π

∑
s∈S

U
(
f(s)

)
π(s).

Step 6.2. Step 3 indirectly proves that Π∗|S is convex. Let Π∗∗ = co(Π∗|S ∪ Π). Since π∗∗ is an

extreme point of Π∗|S and π∗∗ 6∈ Π, π∗∗ is an extreme point of Π∗∗. Then there is an act f ′ ∈ F̂
such that

(24)
∑
s∈S

U
(
f ′(s)

)
π∗∗(s) <

∑
s∈S

U
(
f ′(s)

)
π(s) for any π ∈ Π∗∗ \ {π∗∗}.

Now take q′ ∈ ∆(C) such that f ′(s) �F̂ q
′ for each s ∈ S if f(s) �F̂ q for each s ∈ S and q′ �F̂ f

′(s)

for each s ∈ S if q �F̂ f(s) for each s ∈ S. Now notice that π̄∗ ∈ arg minπ∗∈Π∗{
∑

s∈S U
(
f ′(s)

)
π∗(s)+

U(q′)π∗(s∗)}. This is because the minimizer should assign π̄∗(s∗) = minπ∗∈Π∗
∑

s∈S π
∗(s∗) to state

s∗ when q �F̂ f(s) for each s ∈ S (similarly, π̄∗(s∗) = minπ∗∈Π∗
∑

s∈S π
∗(s∗) when q ≺F̂ f(s) for
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each s ∈ S) and allocate probability
∑

s∈S π̄
∗(s) between states in S to minimize

∑
s∈S U

(
f ′(s)

)
π∗(s).

By way of contradiction, suppose π̃∗ ∈ arg minπ∗∈Π∗{
∑

s∈S U
(
f ′(s)

)
π∗(s) + U(q′)π∗(s∗)}. By the

above argument, π̄∗(s∗) = π̃∗(s∗). Hence,

∑
s∈S

U
(
f ′(s)

)
π̃∗(s) + U(q′)π̃∗(s∗) ≤

∑
s∈S

U
(
f ′(s)

)
π̄∗(s) + U(q′)π̄∗(s∗);

is equivalent to ∑
s∈S

U
(
f ′(s)

) π̃∗(s)∑
s′∈S π̃

∗(s′)
≤
∑
s∈S

U
(
f ′(s)

)
π̄∗∗(s);

However, the above inequality contradicts the choice of π∗∗ since ( π̃∗(s)∑
s′∈S π̃

∗(s′))s∈S ∈ Π∗|S .

Step 6.3. Since π̄∗ is the minimizer of minπ∗∈Π∗{
∑

s∈S U
(
f ′(s)

)
π∗(s) +U(q′)π∗(s∗)} where either

f ′(s) �F̂ q
′ for each s ∈ S or q′ �F̂ f

′(s) for each s ∈ S, by Step 6.1 and Equation (23),∑
s∈S

U
(
f ′(s)

)
π∗∗(s) ≥ min

π∈Π

∑
s∈S

U
(
f ′(s)

)
π(s).

However, the above inequality contradicts the choice of π∗∗ since Π ⊂ Π∗∗ and π∗∗ 6∈ Π.

Necessity of CEC. Take any f ∈ F̂ and p ∈ ∆(C). Let π̄∗ ∈ arg minπ∗∈Π∗{
∑

s∈S U
(
f ′(s)

)
π∗(s)+

U(p)π∗(s∗)} and π̄ be the minimizer of Equation (18). The following two steps jointly prove the

necessity of CEC.

Step 1. f ∼F̂ p implies (f(s)Es)s∈S ∪ p %F̂1
p.

Note that (f(s)Es)s∈S ∪ p %F̂1
p is equivalent to

∑
s∈S U

(
f(s)

)
π̄∗(s) + U(p)π̄∗(s∗) ≥ U(p);

equivalently, ∑
s∈S

U
(
f(s)

) π̄∗(s)∑
s∈S π̄

∗(s)
≥ U(p) = min

π∈Π

∑
s∈S

U
(
f(s)

)
π(s).

The above inequality holds since ( π̄∗(s)∑
s∈S π̄

∗(s))S ∈ Π by reverse full-Bayesianism.

Step 2. f ∼F̂ p implies (f(s)Es)s∈S ∪ p -F̂1
p.

By reverse full-Bayesianism, there is π1 ∈ Π1 such that π̄(s)
π̄(s′) = π1(Es)

π1(Es′ )
for all s, s′ ∈ S. Since

π̄∗ ∈ arg minπ∗∈Π∗{
∑

s∈S U
(
f ′(s)

)
π∗(s) + U(p)π∗(s∗)}, we have

∑
s∈S

U
(
f(s)

)
π̄∗(s) + U(p)π̄∗(s∗) ≤

∑
s∈S

U
(
f(s)

)
π1(Es) + U(p)(1−

∑
s∈S

π1(Es)).

It is enough to show that
∑

s∈S U
(
f(s)

)
π1(Es) +U(p)(1−

∑
s∈S π1(Es)) = U(p); equivalently,

∑
s∈S

U
(
f(s)

) π1(Es)∑
s∈S π1(Es)

= U(p) =
∑
s∈S

U
(
f(s)

)
π̄(s).

The above equality holds since π1(Es)∑
s∈S π1(Es)

= π̄(s) by definition of π1.
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Necessity of NCEI. Take any f ∈ F̂ and p, q ∈ ∆(C) such that f ∼F̂ p and either f(s) �F̂ q for

each s ∈ S or q �F̂ f(s) for each s ∈ S. Let π̄∗ ∈ arg minπ∗∈Π∗{
∑

s∈S U
(
f ′(s)

)
π∗(s)+U(q)π∗(s∗)}.

Similar to what we have proven in Step 2 and Step 6.1 of the sufficiency part , (f(s)Es)s∈S ∪ q %F̂1

pE(S)q is equivalent to ∑
s∈S

U
(
f(s)

) π̄∗(s)∑
s∈S π̄

∗(s)
≥ U(p).

Since f ∼F̂ p implies minπ∈Π
∑

s∈S U
(
f(s)

)
π(s) = U(p), we shall prove that

∑
s∈S

U
(
f(s)

) π̄∗(s)∑
s∈S π̄

∗(s)
≥ min

π∈Π

∑
s∈S

U
(
f(s)

)
π(s).

By reverse full-Bayesianism, we have ( π̄∗(s)∑
s∈S π̄

∗(s))S ∈ Π. Hence, the above inequality holds.

A.5 Proof of Proposition 1

We first state the following useful lemma.

Lemma 3. A MEU preference % satisfies E-Independence if and only if it is E-unambiguous.

We omit the proof of Lemma 3 since it is essentially identical to the second half of the proof

of Theorem 1.

Proof of Proposition 1. By Lemma 3, <F̂ satisfies P-Independence if and only if <F̂ is P-

unambiguous, and <F̂1
satisfies P1-Independence if and only if <F̂1

is P1-unambiguous. Therefore,

<F̂ satisfies P-Independence and <F̂1
satisfies P1-Independence if and only if <F̂ is P-unambiguous

and <F̂1
is a PD-unambiguity consistent extension of <F̂ .

A.6 Proof of Theorem 4

Lemma 4. For any MEU preference relation % with (Π, U), % satisfies E-Separability if and only

if Π is E-rectangular.

Proof of Lemma 4. Take any extreme point π̄ of Π and E ∈ E . Take acts f, h ∈ F̂ such that

π̄ ∈ arg minπ∈Π{
∑

s∈E U(f(s))π(s) +
∑

s∈Ec U(h(s))π(s)} and f(s) 6∼ f(s′), f(s) 6∼ h(s′), and

h(s) 6∼ h(s′) for any s, s′ ∈ S. For any p ∈ ∆(C), E-Separability implies that fEh ∼ pEh if and

only if fEw ∼ pEw. Equivalently,

min
π∈Π
{
∑
s∈E

U(f(s))π(s) +
∑
s∈Ec

U(h(s))π(s)} = min
π∈Π
{U(p)π(E) +

∑
s∈Ec

U(h(s))π(s)}

if and only if

min
π∈Π
{
∑
s∈E

U(f(s))π(s)} = min
π∈Π
{π(E)}U(p).

We can assume that p 6∼ h(s) for any s ∈ Ec. Otherwise, we take f ′ = αf + (1 − α)w and

p′ = αp+ (1− α)δw instead of f and p. Note that there is α ∈ (0, 1) close to 1 such that p′ 6∼ h(s)
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for any s ∈ Ec, π̄ ∈ arg minπ∈Π{
∑

s∈E U(f ′(s))π(s) +
∑

s∈Ec U(h(s))π(s)}, and for any s, s′ ∈ S,

f ′(s) 6∼ f ′(s′), f ′(s) 6∼ h(s′), and h(s) 6∼ h(s′). Moreover, f ′Ew ∼ p′Ew for any value of α.

Suppose now p 6∼ h(s) for any s ∈ Ec. Let π̃ ∈ arg minπ{U(p)π(E) +
∑

s∈Ec U(h(s))π(s)} and

π∗ ∈ arg minπ∈Π{
∑

s∈E U(f(s))π(s)}. Then we have

(25)
∑
s∈E

U(f(s))π̄(s) +
∑
s∈Ec

U(h(s))π̄(s) = U(p)π̃(E) +
∑
s∈Ec

U(h(s))π̃(s)

if and only if ∑
s∈E

U(f(s))π∗(s) = min
π∈Π
{π(E)}U(p).

We first prove that
∑

s∈E U(f(s))π̄(s) = U(p)π̃(E). Note that fEw ∼ pEw implies that fαEw ∼
pαEw for any α ∈ [0, 1] where fα = αf + (1 − α)w and pα = αp + (1 − α)δw. When α is close to

1, π̄ ∈ arg minπ∈Π{
∑

s∈E U(fα(s))π(s) +
∑

s∈Ec U(h(s))π(s)} since f(s) 6∼ h(s′) for any s, s′ ∈ S
and π̃ ∈ arg minπ∈Π{U(pα)π(E) +

∑
s∈Ec U(h(s))π(s)} since p 6∼ h(s) for any s ∈ Ec. Moreover,

π∗ ∈ arg minπ∈Π{
∑

s∈E U(fα(s))π(s)} for any α ∈ (0, 1]. Therefore, we have∑
s∈E

U(fα(s))π̄(s) +
∑
s∈Ec

U(h(s))π̄(s) = U(p)π̃α(E) +
∑
s∈Ec

U(h(s))π̃(s).

Combining the above equation with Equation (25), since h is common in the both equations, we

have∑
s∈E

U(fα(s))π̄(s)− U(p)π̃α(E) = α
(∑
s∈E

U(f(s))π̄(s)− U(p)π̃(E)
)

=
∑
s∈E

U(f(s))π̄(s)− U(p)π̃(E).

Since α < 1, we have
∑

s∈E U(f(s))π̄(s) = U(p)π̃(E). In other words, we just proved that

(26)
1

π̃(E)

∑
s∈E

U(f(s))π̄(s) = U(p) =
1

minπ{π(E)}
∑
s∈E

U(f(s))π∗(s).

We now prove that π∗(s)
minπ{π(E)} = π̄(s)

π̃(E) for any s ∈ S. Take any state s̄ ∈ S and act f ′ such

that f ′(s) = f(s) for any s 6= s̄ and |U(f ′(s̄))−U(f(s̄))| = ε > 0. Take p′ such that f ′Ew ∼ p′Ew.

When ε is small enough, π̄ is still the minimizer of minπ{
∑

s∈E U(f ′(s))π(s) +
∑

s∈Ec U(h(s))π(s)}
since f(s) 6∼ h(s′) for any s, s′ ∈ S, π̃ ∈ arg minπ{U(p′)π(E) +

∑
s∈Ec U(h(s))π(s)} since p 6∼ h(s)

for any s ∈ Ec, π∗ ∈ arg minπ{
∑

s∈E U(fα(s))π(s)} since f(s) 6= f(s′) for any s, s′ ∈ S. Then by

(26), we will have

(27)
1

π̃(E)

∑
s∈E

U(f ′(s))π̄(s) = U(p′) =
1

minπ∈Π{π(E)}
∑
s∈E

U(f ′(s))π∗(s).

Subtracting (26) from (27), we obtain π̄(s)
π̃(E)(U(f ′(s̄))−U(f(s̄))) = π∗(s)

minπ∈Π{π(E)}(U(f ′(s̄))−U(f(s̄))).

34



Hence, π̄(s̄)
π̃(E) = π∗(s̄)

minπ∈Π{π(E)} . From (25), we also obtain

∑
s∈Ec

U(h(s))π̄(s) =
∑
s∈Ec

U(h(s))π̃(s).

By essentially repeating the above argument, we can prove that π̄(s) = π̃(s) for any s ∈ Ec.

Hence, we obtain π̄(E) = π̃(E). In other words, we proved that π̄|E = ( π̄(s)∑
s′∈E π̄(s′))s∈E = π∗|E =

( π∗(s)∑
s′∈E π

∗(s′))s∈E .

Now take any f ∈ F̂ . For each E, take pE ∈ ∆(C) such that fEw ∼ pEEw; equivalently,

min
π∈Π
{
∑
s∈E

U(f(s))π(s)} = min
π∈Π
{π(E)}U(pE).

Notice that f ∼ pEEf . By repeatedly using E-Separability and replacing f with pE on each E, we

obtain f ∼ (pEE)E∈E . Equivalently, by choices of pE ,

min
π∈Π
{
∑
s∈S

U(f(s))π(s)} = min
π∈Π
{
∑
E∈E

π(E)U(pE)} = min
π∈Π
{
∑
E∈E

π(E)
minπ∈Π{

∑
s∈E U(f(s))π(s)}

minπ∈Π{π(E)}
}.

Since we proved that π∗(E) = minπ∈Π{π(E)} where π∗ ∈ arg minπ∈Π{
∑

s∈E U(f(s))π(s)}, the

above equality implies

min
π∈Π
{
∑
s∈S

U(f(s))π(s)} = min
π∈Π
{
∑
E∈E

π(E) min
π∈Π
{
∑
s∈E

U(f(s))
π(s)

π(E)
}}.

Equivalently,

min
π∈Π
{
∑
s∈S

U(f(s))π(s)} = min
π∈Π

{∑
E∈E

π(E) min
π|E∈Π|E

{∑
s∈E

U(f(s))π|E(s)
}}
.

Since we proved that π̄|E = π∗|E where π̄ was an arbitrarily chosen extreme point of Π such

that π̄ ∈ arg minπ∈Π{
∑

s∈E U(f(s))π(s)+
∑

s∈Ec U(h(s))π(s)} and π|E is decided before the choice

of π for the outside min operator, we have

Π = {
∑
E∈E

π(E)π|E : for some π ∈ Π and π|E ∈ Π|E for each E ∈ E}.

Proof of Theorem 4. By Lemma 4, %F̂ satisfies P-Separability if and only if Π is P-rectangular

and %F̂1
satisfies P1-Separability if and only if Π1 is P1-rectangular. Moreover, by Theorem 3, %F̂

and %F̂1
jointly satisfy CEC and NCEI if and only if %F̂ is a reverse full-Bayesian extension of %F̂1

and there are α, β with α > 0 such that U1(p) = αU(p) + β for any p ∈ ∆(C). Therefore, (i) and

(ii) are equivalent.
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A.7 Proof of Proposition 2

We first prove the following useful lemmas.

Lemma 5. For any MEU preference % with (Π, U), % is E-unambiguous and Π is E-rectangular

if and only if % is E-additive-separable.

Proof of Lemma 5. It is straightforward that E-additive-separability implies E-unambiguity.

Therefore, it is enough to prove that under E-unambiguity, E-rectangularity and E-additive-separability

are equivalent. Take any MEU preference < with (Π, U) that is E-unambiguous. Let π∗(E) = π(E)

for any π ∈ Π. Then Π is E-rectangular if and only if

Π =
{∑
E∈E

π∗E · πE
∣∣∣πE ∈ ΠE for each E ∈ E

}
=
∑
E∈E

π∗E ΠE .

In other words, Π is E-rectangular if and only if

min
π∈Π

∑
s∈S

U
(
f(s)

)
π(s) =

∑
E∈E

min
π∈ΠE

{∑
s∈E

U
(
f(s)

)
π(s)

}
for all f ∈ F̂ .

Lemma 6. A MEU preference % satisfies E-Separability and E-Independence if and only if % is

E-additive-separable.

Proof of Lemma 6. By Lemma 3, E-unambiguity is equivalent to E-Independence. By Lemma

4, E-rectangularity is equivalent to E-Separability. Therefore, % satisfies E-Separability and E-

Independence if and only if % is E-unambiguous and Π is E-rectangular. Finally, by Lemma 5, %

satisfies E-Separability and E-Independence if and only if % is E-additive-separable.

Proof of Proposition 2. The equivalence between (i) and (iii) follows from Lemma 6. The

equivalence between (ii) and (iii) follows from Lemma 5. Therefore, (i), (ii), and (iii) are equiva-

lent.

A.8 Proofs of Corollaries 2-4

Proof of Corollary 2. As shown in Theorem 2, π(Es) = π(E(S))µ(s) for any s ∈ S and π ∈ Π1.

Since π(E(S)) = π(S1) = 1 in the context of discovering acts, π(Es) = µ(s) for any s ∈ S and

π ∈ Π1. Therefore, Unambiguity Consistency is satisfied.

Proof of Corollary 3. As shown in Theorem 2, π(Es) = π(E(S))µ(s) for any s ∈ S and π ∈ Π1.

Let δ̄ = maxπ∈Π1{π(E(S))} and δ = minπ∈Π1{π(E(S))}. Since Es = s1 for some s1 ∈ S1, we

obtain π(s1) = δµ(s) where δ ∈ [δ, δ̄].

Proof of Corollary 4. By Corollary 2, Unambiguity Consistency is satisfied. Hence, %F̂1
is

P1-unambiguous. Then by Lemma 5, P1-rectangularity is equivalent to P1-additive-separability.
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B Parametric MEU: Axiomatic Characterization

In this section, we axiomatically characterize the parametric MEU introduced in Section 6. To

characterize the representation (13), we need to strengthen NUI as follows.

(A.14) (Extreme NUI) For all f, g ∈ F̂1, q ∈ ∆(C1) and α ∈ [0, 1],

if f <F̂1
q, then αf + (1− α)g <F̂1

αq + (1− α)g,

and if for each s ∈ S, there is s1 ∈ Es such that f(s̃1) <F̂1
f(s1) and g(s̃1) <F̂1

g(s1) for all

s̃1 ∈ Es, then

f ∼F̂1
q if and only if αf + (1− α)g ∼F̂1

αq + (1− α)g.

Similar to NUI, the first part of Extreme NUI suggests that the objective lottery q suffers more

(or gains less) than the subjective act f from mixtures that eliminate its objective appeal. However,

the second part suggests that the objective lottery q and the subjective act f equally suffer (or

equally gain) when they are mixed with an act that agrees with f on the worst state in Es.
35

Under Extreme NUI, the extended MEU representation satisfies both Unambiguity Consistency

and Likelihood Consistency.

Theorem 5. Suppose that S1 = SR1 . Then, the following two statements are equivalent:

(i) <F̂ satisfies axioms (A.1)-(A.5), <F̂1
satisfies axioms (A.1)-(A.4), and Extreme NUI, and

<F̂ and <F̂1
jointly satisfy BAC.

(ii) There exist a non-constant and affine function U : ∆(C) → R, a probability measure µ ∈
∆(S), and a set {(ηs, αs)}s∈S ∈

∏
s∈S (∆(Es)× [0, 1]) such that <F̂ is a SEU preference with

(µ,U) and for all f, g,∈ F̂1, f <F̂1
g if and only if

(28)
∑
s∈S

µ(s)
(

min
π∈Π

(ηs,αs)
Es

∑
s1∈Es

U
(
f(s1)

)
π(s1)

)
>
∑
s∈S

µ(s)
(

min
π∈Π

(ηs,αs)
Es

∑
s1∈Es

U
(
g(s1)

)
π(s1)

)
,

where

Π
(ηs, αs)
Es

= αs{ηs}+ (1− αs)∆(Es).

Consistent with Corollary 2, Theorem 5 (specially, Equation (28)) implies that <F̂1
is an

unambiguity and likelihood consistent extension of the original preference <F̂ . Moreover, the DM’s

new beliefs Π1 on the expanded state space S1 take the following form:

(29) Π1 = ×s∈S µ(s) Π
(ηs, αs)
Es

= ×s∈S
{
µ(s)αs{ηs}+ µ(s)(1− αs)∆(Es)

}
.

35Recall that NUI requires that bets g = pEsr cannot be used to hedge against ambiguity. Notice that for any act
f and a bet g = pEsr, f and g satisfy the following property in Extreme NUI: for any s ∈ S, there exists s1 ∈ Es
with f(s̃1) < f(s1), g(s̃1) < g(s1) for all s̃1 ∈ Es. Hence, Extreme NUI is stronger than NUI. The second part of
Extreme NUI is adopted from Eichberger and Kelsey (1999).
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The proof of Theorem 5 is in the online appendix.
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Appendix D: Proof of Theorem 5

We only prove the sufficiency part. Since Extreme NUI is stronger than NUI, by Theorem 2, there

are (µ,U) and (Π1, U) such that <F̂ admits a SEU representation with (µ,U) and <F̂1
admits

a MEU representation with (Π1, U). Moreover, <F̂1
is an unambiguity consistent and likelihood

consistent extension of <F̂ . That is, π(Es) = µ(s) for any s ∈ S and π ∈ Π1. Without loss of

generality, let U(w) = 0 where w is the worst consequence in C. We prove the theorem in three

steps.

Step 1: For any f, h ∈ F̂1 and s ∈ S,

min
π∈Π1

{ ∑
s∈Es

U(f(s)π(s) +
∑

s∈S1\Es

U(h(s))π(s)
}

= min
π∈Π1

∑
s∈Es

U(f(s)π(s) + min
π∈Π1

∑
s∈S1\Es

U(h(s))π(s).

Let us fix f, h ∈ F̂1 and s ∈ S. Take any p ∈ ∆(C) such that fEsw ∼F̂1
pEsw. Notice that

fEsw and pEsh as well as pEsw and pEsh agree on the worst state of each event in {Es′}s′∈S .

Therefore, by Extreme NUI, for any α ∈ [0, 1],

(27) (αf + (1− α)p)Es(αw + (1− α)h) ∼F̂1
pEs(αw + (1− α)h);

equivalently,

(28) VMEU
(

(αf + (1− α)p)Es(αw + (1− α)h)︸ ︷︷ ︸
g

)
= VMEU

(
pEs(αw + (1− α)h)︸ ︷︷ ︸

g̃

)
.

∗Email: dominiak@vt.edu.
†Email: gerelt@vt.edu.
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Since Es is unambiguous and U(w) = 0,

VMEU (g) = min
π∈Π1

{
α
∑
s∈Es

U(f(s))π(s) + (1− α)π(Es)U(p) + (1− α)
∑

s∈S1\Es

U(h(s))π(s)
}

=(1− α)U(p)π(Es) + min
π∈Π1

{
α
∑
s∈Es

U(f(s))π(s) + (1− α)
∑

s∈S1\Es

U(h(s))π(s)
}

and

VMEU (g̃)= min
π∈Π1

{
U(p)π(Es)+(1−α)

∑
s∈S1\Es

U(h(s))π(s)
}

=U(p)π(Es)+(1−α) min
π∈Π1

{ ∑
s∈S1\Es

U(h(s))π(s)
}
.

Thus, when α = 1
2 , we get VMEU (g) = VMEU (g̃) if and only if

min
π∈Π1

{ ∑
s∈Es

U(f(s)π(s) +
∑
s∈Es

U(h(s))π(s)
}

= U(p)π(Es) + min
π∈Π1

∑
s∈Es

U(h(s))π(s).

Moreover, since fEsw ∼F̂1
pEsw and U(w) = 0, we have minπ∈Π1

∑
s∈Es

U(f(s)π(s) = U(p)π(Es).

By combining the last equalities, we obtain

min
π∈Π1

{ ∑
s∈Es

U(f(s)π(s) +
∑

s∈S1\Es

U(h(s))π(s)
}

= min
π∈Π1

∑
s∈Es

U(f(s)π(s) + min
π∈Π1

∑
s∈S1\Es

U(h(s))π(s).

Step 1 essentially proves the extended MEU preference <F̂1
is additively separable across the

events {Es}s∈S . That is,

min
π∈Π1

∑
s∈S

µ(s)
∑
s1l ∈Es

U(h(s1
l ))

π(s1
l )

π(Es)


is minimized at each event Es, separately. Therefore, we obtain the following representation:

(29) VMEU (f) =
∑
s∈S

µ(s) min
πs∈Π

F1
s

 ∑
s1k∈Es

πs(s
1
k)U

(
f(s1

k)
) ,

where ΠF1
s ⊆ ∆(Es). In next steps, we prove that beliefs on Es take the form ΠF1

s = βs {ηs}+ (1−
βs) ∆(Es) for some βs ∈ [0, 1] and ηs ∈ ∆(Es).

Fix an event Es. Take any s1
t ∈ Es. Let us take acts f, g, h ∈ F̂1 such that for any s1

j ∈ Es,
f(s1

j ) <F̂1
f(s1

t ), g(s1
j ) <F̂1

g(s1
t ), and h(s1

j ) <F̂1
h(s1

t ), and f(s1) = g(s1) = h(s1) = w for any

s1 ∈ S1 \ Es. Then, by Extreme NUI, for any α ∈ (0, 1],

f ∼F̂1
g iff αf + (1− α)h ∼F̂1

αg + (1− α)h;

2



equivalently,

(30) min
πs∈Π

F1
s

 ∑
s1k∈Es

πs(s
1
k)U

(
f(s1

k)
) = min

πs∈Π
F1
s

 ∑
s1k∈Es

πs(s
1
k)U

(
g(s1

k)
) iff

min
πs∈Π

F1
s

 ∑
s1k∈Es

πs(sk)U
(
αf(s1

k) + (1− α)h(s1
k)
)= min

πs∈Π
F1
s

 ∑
s1k∈Es

πs(s
1
k)U

(
αg(s1

k) + (1− α)h(s1
k)
) .

Step 2: Let f(s1
t ) = g(s1

t ) = h(s1
t ) = w. Then (30) is equivalent to

min
πs∈Π

F1
s

 ∑
s1k∈Es\s1t

πs(s
1
k)U

(
f(s1

k)
) = min

πs∈Π
F1
s

 ∑
s1k∈Es\s1t

πs(s
1
k)U

(
g(s1

k)
) iff

min
πs∈Π

F1
s

 ∑
s1k∈Es\s1t

πs(sk)U
(
αf(s1

k) + (1− α)h(s1
k)
)= min

πs∈Π
F1
s

 ∑
s1k∈Es\s1t

πs(s
1
k)U

(
αg(s1

k) + (1− α)h(s1
k)
) .

The above equivalence is in fact the Independence Axiom on Es \ s1
t . Therefore, there is

πts ∈ ∆(Es \ s1
t ) such that

min
πs∈Π

F1
s

 ∑
s1k∈Es\s1t

πs(s
1
k)U

(
f(s1

k)
) =

∑
s1k∈Es\s1t

πts(s
1
k)U

(
f(s1

k)
)
.

For any s1
j ∈ Es \ s1

t , let f(s1
k) = w for any s1

k 6= s1
j . Then the above equation implies that

min
πs∈Π

F1
s

{
πs(s

1
j )
}

= πts(s
1
j ). Since min

πs∈Π
F1
s

{
πs(s

1
j )
}

is independent of s1
t , we shall write πs(s

1
j )

instead of πts(s
1
j ).

Let π∗s(s
1
t ) ≡ max

πs∈Π
F1
s
{πs(s1

t )}.

Step 3: Suppose s1
j ∈ Es \ s1

t , f(s1
j ) �F̂1

f(s1
t ), g(s1

j ) �F̂1
g(s1

t ), and h(s1
j ) �F̂1

h(s1
t ), and

f(s1
t ) = g(s1

t ) = h(s1
t ). Moreover, suppose f(s1

j ) = f(s1
k) for any s1

j , s
1
k 6= s1

t .

Suppose U(f(s1
t )) = U(g(s1

t )) = U(h(s1
t )) is small enough relative to U(f(s1

k)), U(g(s1
k)), and

U(g(s1
k)). Then (30) is equivalent to

π∗s(s
1
t )U(f(s1

t )) + (1− π∗s(s1
t ))U(f(s1

k)) =
(
1−

∑
s1k∈Es\s1t

πs(s
1
k)
)
U(g(s1

t )) +
∑

s1k∈Es\s1t

πs(s
1
k)U

(
g(s1

k)
)

if and only if

(1−
∑

s1k∈Es\s1t

πs(s
1
k))U

(
αf(s1

t ) + (1− α)h(s1
t )
)

+
∑

s1k∈Es\s1t

πs(s
1
k)U

(
αf(s1

k) + (1− α)h(s1
k)
)

3



= (1−
∑

s1k∈Es\s1t

πs(s
1
k))U

(
αg(s1

t ) + (1− α)h(s1
t )
)

+
∑

s1k∈Es\s1t

πs(s
1
k)U

(
αg(s1

k) + (1− α)h(s1
k)
)
.

The above equivalence implies π∗s(s
1
t ) = 1 −

∑
s1k∈Es\s1t

πs(s
1
k). Similarly, we have π∗s(s

1
t′) =

1−
∑

s1k∈Es\s1t′
πs(s

1
k). These two equalities imply that π∗s(s

1
t )− πs(s1

t ) = π∗s(s
1
t′)− πs(s1

t′).

Since π∗s(s
1
t ) ≥ πs(s1

t ), let 1− αs ≡ π∗s(s1
t )− πs(s1

t ). Finally, since π∗s(s
1
t ) +

∑
s1k 6=s

1
t
πs(s

1
k) = 1,

we have
∑

s1k∈Es
πs(s

1
k) = αs. Let

ηs(s
1
t ) ≡

πs(s
1
t )∑

s1k∈Es
πs(s1

k)
=
πs(s

1
t )

αs
.

Then we have ΠF1
s = {πs}+ (1− αs) ∆(Es) = αs {ηs}+ (1− αs) ∆(Es) where ηs ∈ ∆(Es).
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