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1 Introduction

How decision makers revise their beliefs after receiving information is a foundational

problem in economics and game theory. While the benchmark model of Bayesian updat-

ing is broadly appealing for a variety of reasons, there is robust experimental evidence

that people’s beliefs systematically deviate from what Bayesian updating prescribes.1

When information is qualitative or imprecise, there is a more fundamental issue at

hand. To illustrate, consider the following statements:

(i) The chance that the stock market will go down is at least 60%.

(ii) An urn with 100 balls contains between 30 and 50 green balls.

(iii) Candidate A is more likely to win than Candidate B.

(iv) Your heart disease risk is 9% if you do not smoke, and 17% if you do smoke.2

Despite the fact that each of these is a natural statement in daily life, it is not clear

how to apply Bayes’ rule to such information.

These statements are examples of what we refer to as general information, and they

fall outside the standard framework used to study belief updating. The standard frame-

work to study updating represents information as an event, or a subset of some grand

state space. For a set of states S, the “information” that a decision maker (henceforth,

DM) receives is assumed to be given by the statement: “the event E ⊆ S occurred.” We

interpret this as if the DM has learned that the true state is an element of E and that

states outside of E are no longer possible. However, in many real-life circumstances,

DMs may receive information in more general or nuanced forms. For instance, a doctor

may ask a colleague for her opinion on the chances of a treatment’s success. If this

1For instance, they may exhibit confirmation bias, the representativeness heuristic, under- or over-
reaction, or a myriad of other biases (see Benjamin (2019) for a discussion).

2These estimates come from the Mayo Clinic Heart Disease Risk Calculator.
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opinion is given as a specific probability estimate over the states, information in this ex-

ample is a particular element of ∆(S).3 Similarly, a political commentator may declare

that he believes it is more likely than not that a bill passes through Congress, and so

information here is a probability interval, a subset of ∆(S). Our setting allows us to

model updating behavior under these richer forms of information.

To study these forms of information, we consider an extended Anscombe and Au-

mann (1963) framework in which preferences are conditional on general information. We

define general information as a collection of possible probability measures over a given,

payoff relevant state space (see Damiano (2006), Ahn (2008), Gajdos et al. (2008), Cham-

bers and Hayashi (2010), Zhao (2020)). Importantly, this generalizes both the standard

notion of an event and notions of qualitative information. Within this framework, we

provide behavioral foundations for a “minimally rational” form of belief revision in re-

sponse to this information. A DM who behaves in accordance with our behavioral

postulates acts as if she selects a revised (or posterior) belief that minimizes the subjec-

tive distance between her prior and the provided information. We will refer to such a

DM as a Minimum Distance Subjective Expected Utility (MDSEU) maximizer.

Importantly, the class of MDSEU preferences allows for both Bayesian and non-Bayesian

belief dynamics.

More formally, we assume that the DM forms a subjective belief µ, represented by

a probability measure over the finite state space S, and uses it to evaluate acts (maps

from states to consequences) via their expected utilities. This information is encoded in

her initial preference %. We then suppose that our DM receives information depicted

by a set I of probability distributions over the states (i.e., I is a closed subset of ∆(S)).

She now has a preference over acts conditional on the received information %I .

As new information I emerges, a subjective expected utility (SEU) DM may revise

3∆(S) denotes the set of all probability distributions over S.
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her initial belief µ. In particular, she must decide whether to abandon µ and, if so, which

new belief to form. Our DM solves this problem by selecting a new belief µI that is (i)

consistent with I and (ii) closest to her initial belief. That is, her new belief µI is the

element of I that is closest to µ among all of the probability measures in I (illustrated

for two information sets in Figure 1). When her initial belief µ is consistent with I (i.e.,

µ ∈ I), the closest probability measure is necessarily µ itself, and thus the DM retains

her initial belief (i.e., µ = µI).

µ

s3

s2s1

I

µI

µ

s3

s2s1

I

µI

Figure 1: Information Sets and Minimum Distance Updating. The left panel illustrates
“only s2 and s3 are possible,” while the right panel illustrates “s3 is at least twice as
likely as s2.”

We provide a complete behavioral analysis of this form of belief revision. In addition

to a few standard and technical postulates, we provide three novel axioms that are

essential to our analysis. The axioms of Compliance and Responsiveness ensure

that the DM accepts the information as truthful. Consequently, she selects a posterior

belief that is consistent with I. Our other crucial axiom, Informational Betweenness,

ensures that beliefs are consistent with minimization of some subjective distance notion.

One important feature of our framework is that it only requires a prior over the

payoff-relevant states. This is in contrast to standard Bayesian models that assume the

DM utilizes a joint prior over payoff states and possible signals. In many real-life settings,

it is implausible to expect a decision maker to have any idea what types of information
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she will receive, and it is even less plausible to expect her to have constructed a unique

belief about how this information correlates with payoff states. Thus, while there is

a sense in which our model captures “bounded rationality,” it allows for a well-defined

notion of updating for statements that a Bayesian DM cannot handle.4 Further, a model

that only requires a simplified specification of beliefs is often more convenient to work

with and a more plausible description of behavior.

While our notion of information is more general than the one typically used to study

(Bayesian) updating, it allows for a natural analogue of the standard notion of an event.

For any E ⊆ S, the information set I1
E = {π ∈ ∆(S) : π(E) = 1} means “E has

occurred” (the right-hand side of Figure 1 depicts I1
{s2,s3}). Therefore, we can check for

consistency of minimum distance updating with Bayesian updating on these “standard”

events. We show that suitably adapting the classic axiom of Dynamic Consistency

to our environment essentially characterizes distance functions that generate posteriors

consistent with Bayesian updating on standard events. Our result shows that there

is a family of such distance functions, which we refer to as Generalized Bayesian

Divergence (Kullback-Leibler divergence is an example). Consequently, in our setting,

there may be Bayesian disagreement. That is, “Bayesian” DMs may start with the same

prior, receive the same information, and arrive at different posteriors. Therefore, our

results show that the structure of information is crucial for the generation of polarization

and disagreement.5

A well-known limitation of Bayesian updating (in standard settings) is that it is

not defined for zero-probability events. Because our framework is much richer than

the standard setting, MDSEU allows us to extend updating to zero-probability events,

4Indeed, as argued in Zhao (2020), even in the event of a prior over payoff states and signals (i.e.,
we expand to a product state space), we could still refer to general information in the expanded state
space, which a Bayesian DM could not incorporate.

5Somewhat similarly, Baliga et al. (2013) show that polarization may arise under ambiguity (e.g.,
imprecise beliefs). We show that polarization may arise from imprecise information, and thus view our
results as a partial complement.
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thereby offering a complete theory of updating. We illustrate this explicitly by showing

that MDSEU “nests” the Hypothesis Testing model (HT) of Ortoleva (2012). In the

HT, an agent’s behavior is in accord with SEU, yet she also has a second-order belief

and thus has multiple beliefs in mind. She updates her prior according to Bayes’ rule

if she receives “expected” information. When information is “unexpected,” she rejects

her prior and uses her second-order belief to select a new belief according to a maximum

likelihood rule. This suggests an interpretation of an essentially Bayesian agent who is

nevertheless open to fundamentally shifting her worldview. The corresponding distance

function in MDSEU is consistent with this interpretation: the agent uses a support-

dependent distance that is “piece-wise Bayesian.”

The remainder of this paper is structured as follows. In section 2, we introduce the

formal framework and our notion of updating. We provide behavioral foundations of the

MDSEU representation in section 3. We discuss Bayesian updating, disagreement, and

zero-probability events in section 4. In section 5, we show how to recover a particular

distance function from updating rules specified on classic events, and we apply this result

to construct non-Bayesian distance notions. We close with a discussion of related work

in section 6. The proofs are in the Appendix.

2 Model

2.1 Basic Setup

We study choice under uncertainty in the framework of Anscombe and Aumann (1963).

A DM faces uncertainty described by a nonempty and finite set of states of nature

S = {s1, . . . , sn}. A nonempty subset E of S is called an event. Let X be a nonempty,

finite set of outcomes and ∆(X) be the set of all lotteries over X, ∆(X) :=
{
p : X →

[0, 1] |
∑

x∈X p(x) = 1
}

.
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We model the DM’s preference over acts. An act is a mapping f : S → ∆(X) that

assigns a lottery to each state. Any act f that assigns the same lottery to all states

(f(s) = p for all s ∈ S) is called a constant act. Using a standard abuse of notation,

we denote by p ∈ F the corresponding constant act. Hence, we can identify the set of

lotteries ∆(X) with the constant acts. The set of all acts is F := {f : S → ∆(X)}.

A preference relation over F is denoted by %. As usual, � and ∼ are the asymmetric

and symmetric parts of %, respectively. We denote by ∆(S) the set of all probability

distributions on S. For notational convenience, for each µ ∈ ∆(S) and each si ∈ S,

we will sometimes write µi in place of µ(si): the probability of state si according to

µ. Finally, let ‖ · ‖ denote the Euclidean norm. For any set A and a function d on

A, we write arg min d(A) = {x ∈ A | d(y) ≥ d(x) for any y ∈ A} (whenever this is

well-defined).

2.2 Information Sets

We consider an environment in which the DM receives new pieces of information about

the uncertainty she faces (i.e., the states in S). Importantly, we explicitly develop a

general information structure, defined below.

Definition 1. We call I ⊆ ∆(S) an information set if it is non-empty and closed.

The collection of all information sets is denoted I .

Initially, the DM faces this uncertainty about the states with “complete ignorance.”

We may think of this as the case where her initial information is the set of all probability

distributions over S (i.e., I = ∆(S)). Later, the DM receives “more precise” informa-

tion in the form of I ⊂ ∆(S). In other words, the DM learns that some probability

distributions are impossible. This is analogous to the standard setup, in which the DM

is informed that certain states of nature are no longer possible (i.e., the DM is informed

that E ⊂ S has occurred). However, our notion of information is more general and
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nests the idea of an event. The information set containing all probability distributions

concentrated on E, I = {π ∈ ∆(S) | π(E) = 1}, is equivalent to learning that all

states outside E are impossible. We will therefore refer to such information sets as an

info-event. Our setting allows for information sets that capture richer statements, and

we provide some examples below.

(i) For any E ⊂ S and α ∈ [0, 1], the information set “E occurs with probability α”

is

(1) I = {π ∈ ∆(S) | π(E) = α} = IαE.

We will refer to such an information set as an α-event.6 When α = 1, this corre-

sponds to an info-event.

(ii) For any probability distribution π, the information set “π is the true distribution”

is

(2) I = {π}.

(iii) For any A,B ⊆ S, the information set “A is at least δ-as likely as B” is

(3) I = {π ∈ ∆(S) | π(A) ≥ δπ(B)}.

Notice that for δ = 1, this corresponds to the classic notion of qualitative infor-

mation.

(iv) For E ⊂ S, and 0 < α < β < 1, the information set “the probability of E is

6For instance, in the 3-color Ellsberg experiment, subjects are informed that a ball will be drawn
from an urn containing red, blue and green balls, and it is standard to assume that the probability of
a red ball is 1

3 .
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between α and β” is

(4) I = {π ∈ ∆(S) | α ≤ π(E) ≤ β}.

2.3 Minimum Distance Belief Revision

The DM’s behavior is depicted by a family {%I}I∈I of preference relations, each defined

over F . Before any information is revealed (i.e., I = ∆(S)), we write % in place of

%∆(S), and we call % the initial preference. As a new piece of information I ⊂ ∆(S)

emerges, the DM revises % given I. The new preference is denoted by %I and governs

the DM’s conditional choice in light of I.

We assume that the DM’s initial preference is of the SEU form. That is, the initial

preference % admits a SEU representation with respect to an expected utility function

u : ∆(X) → R and a (unique) probability distribution µ ∈ ∆(S) such that for any

f, g ∈ F ,

(5) f % g if and only if
∑
s∈S

µ(s)u
(
f(s)

)
≥
∑
s∈S

µ(s)u
(
g(s)

)
.

Hence, the DM’s initial behavior is characterized by the pair (u, µ).

How does the DM incorporate I into her conditional choice? We assume that the

DM updates her initial preference % by revising her initial belief µ while keeping her

risk attitude unchanged. Let µI denote the DM’s revised (updated) belief conditional

upon I. How does the DM form her new belief µI when µ 6∈ I, i.e., her old belief µ

conflicts with the available information?

We impose two properties on the DM’s belief revision. First, we assume that the

DM reacts to and accepts the information, so that her new belief µI is consistent with I

(i.e., µI ∈ I). Second, we assume that she exhibits “inertia of initial beliefs.” Therefore,
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she chooses the µI closest to her initial belief µ. That is, the DM forms her new belief

µI as if she was minimizing the distance between her initial belief µ and all probability

distributions consistent with I (see Figure 1). We call this updating procedure mini-

mum distance updating, and µI the minimum distance update of µ. When her

initial belief µ is consistent with I, the closest probability measure is µ, and thus the

DM keeps it (i.e., µ = µI).

Putting these assumptions together, we consider a DM whose preference relation %I

admits a SEU representation with respect to the same expected utility function u and a

new probability distribution µI ∈ I that is of minimal “distance” from the initial belief

µ for each information I ∈ I . We also require that the DM’s notion of distance satisfy

two intuitive distance properties, which we formally define below.

Definition 2 (Distance Function and Its Tie-Breaker). A function d : ∆(S) → R is a

distance function with respect to µ ∈ ∆(S), denoted by dµ, if,

(i) for any distinct π, π′ ∈ ∆(S) with dµ(π) = dµ(π′), there is some α ∈ (0, 1) such

that dµ(π) > dµ(απ + (1− α)π′), and

(ii) dµ(µ) < dµ(π) for any π ∈ ∆ \ {µ}.

Moreover, a function d̂µ : ∆(S) → R is a tie-breaker for dµ if (i) d̂µ is injective and

(ii) for any π, π′ ∈ ∆, dµ(π) > dµ(π′) implies d̂µ(π) > d̂µ(π′).

Property (i) requires that if two beliefs are equidistant from µ, then there is a mixed

belief that is strictly closer to µ. Property (ii) ensures that the current belief is unique,

in that all different beliefs are in fact considered to be different. Most distance notions

allow for two objects to be “equidistant” (i.e., allow indifference); hence we also introduce

a notion of tie-breaking. As we will show, tie-breaking is only necessary when I is not

convex. Note that any tie-breaker d̂µ is also a distance function with respect to µ.
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Definition 3 (MDSEU). A family of preference relations {%I}I∈I admits a Mini-

mum Distance Subjective Expected Utility representation if there are a Bernoulli

utility function u : X → R, a prior µ ∈ ∆(S), a distance function dµ : ∆(S) → R, and

its tie-breaker d̂µ : ∆(S)→ R such that

(i) for each I ∈ I, the preference relation %I admits a SEU representation with (u, µI),

meaning that for any f, g ∈ F ,

(6) f %I g if and only if
∑
s∈S

µI(s)u
(
f(s)

)
≥
∑
s∈S

µI(s)u
(
g(s)

)
,

where

µI ≡ arg min d̂µ
(

arg min dµ(I)
)
,

(ii) for each convex I ∈ I,

µI = arg min dµ(I).

The family {%I}I∈I of MDSEU preferences is characterized by (u, dµ, d̂µ). We will

restrict our attention to continuous notions of distance. Since we do not require dµ to

be injective (e.g., we allow for ties), we also require the tie-breaker to satisfy a notion

of continuity that is consistent with the distance notion. To that end, we provide the

following definition.

Definition 4. A pair (dµ, d̂µ) is upper semicontinuous if for any two sequences

{πn}, {πn} in ∆(S) with πn → π and πn → π, if (dµ(πk), d̂µ(πk)) > (dµ(πk), d̂µ(πk))

for every k ∈ N, then (dµ(π), d̂µ(π)) > (dµ(π), d̂µ(π)). A distance function dµ is locally

nonsatiated with respect to µ if for any π ∈ ∆(S) \ {µ} and ε > 0, there is a π′ such

that ‖π − π′‖ < ε and dµ(π′) < dµ(π).
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2.4 Notions of Distance

In our model, the DM’s notion of distance is subjective, and thus our framework allows

for a wide variety distance notions. In this section, we discuss a few examples of distance

functions. We begin with a well-known method of measuring the distance between

probability measures from information theory.

Definition 5 (Kullback-Leibler Divergence). Let dµ be the Kullback-Leibler (KL)

distance function:

(7) dµ(π) = −
n∑
i=1

µi ln

(
πi
µi

)

This distance function is particularly easy to interpret when information is in the

form of an α-event: IαE = {π ∈ ∆(S) | π(E) = α}. In this case,

(8) µI(s) = α
µ(s)

µ(E)
1{s ∈ E}+ (1− α)

µ(s)

µ(Ec)
1{s ∈ Ec}.

That is, the DM shifts probability mass between events E and Ec, maintaining the

relative probabilities between states within E and Ec. When α = 1 (i.e., IαE represents a

standard event), the KL distance function yields Bayesian updating: µI(s) = µ(s)
µ(E)

1{s ∈

E}.

Note that KL is well-defined only for distributions that have the same support7 and

so we are abusing notation a bit. Thus, KL and Bayesian updating are both undefined

for certain forms of information. When we refer to KL as an MDSEU, we really mean

that dµ is consistent with KL where it is well-defined. In section 4.2, we show how a

MDSEU distance may be viewed as a “support-dependent extension” of KL, so that it

is well defined for all distributions. By extending KL in this way, it can be used to study

updating after zero-probability events.

7In infinite state spaces, for distributions that are mutually absolutely continuous.
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Definition 6 (Generalized Bayesian Divergence). For a twice differentiable func-

tion σ : R+ → R such that σ′′ < 0, lim
x→+∞

σ(x) = +∞, and lim
x→+∞

σ(x)
x

= 0, let dµ be

given by

(9) dµ(π) = −
n∑
i=1

µi σ(
πi
µi

).

Notice that this includes the KL distance function as a special case (σ(x) = ln(x)).

When information corresponds to the standard dynamic setup, i.e., I = {π ∈ ∆(S) |

π(E) = 1}, dµ yields a Bayesian posterior: µI(s) = µ(s)
µ(E)

1{s ∈ E}. However, for more

general information sets, the precise form of σ will matter. Consequently, “Bayesian”

DMs might disagree with each other when provided more general information sets I.

This is studied in section 4.

Definition 7 (h-Bayesian). Let dµ(π) =
∑n

i=1 hi(µi)σ( πi
hi(µi)

), where hi : R+ → R and

σ satisfies the conditions from Generalized Bayesian Divergence.

The h-Bayesian distance notion captures a form of non-Bayesian updating where the

agent is Bayesian with respect to biased beliefs. In this example, h specifies the belief

distortion applied to the initial belief. For α-events,

µIαE(s) = α
hs(µ(s))∑

s′∈E hs′(µ(s′))
1{s ∈ E}+ (1− α)

hs(µ(s))∑
s′∈Ec hs′(µ(s′))

1{s ∈ Ec}.

When hi(µi) = µi, this reduces to Bayes’ rule. When hi(µi) = (µi)
ρ, this corresponds to

a special case of Grether (1980). For ρ < 1, this captures under-reaction to information

and base-rate neglect, while ρ > 1 captures over-reaction to information. It is straight-

forward to generalize h to capture more general belief distortions, including asymmetric

reactions based on prior beliefs like confirmation bias (á la Rabin and Schrag (1999)) or

over(under) reaction to small(large) probabilities (Kahneman and Tversky (1979)).

A final example that we wish to mention is the Euclidian distance.
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Definition 8 (Euclidean). Let dµ(π) =
∑n

i=1(πi − µi)2.

For the Euclidian distance, when I1
E = {π ∈ ∆(S) | π(E) = 1}, we have

µI1E(s) = µi +
1− µ(E)

|E|
.

Here, prior odds are “ignored” when updating beliefs: probability is allocated to the

remaining states (i.e., those in E) uniformly.

3 Axiomatic Characterization

In this section, we present behavioral postulates that characterize the family of Minimum

Distance SEU preferences. Our first axiom imposes the standard SEU conditions of

Anscombe and Aumann (1963) on each (conditional) preference relation %I . Because

these conditions are well-understood, we will not provide a formal discussion of the

conditions.

Axiom 1 (SEU Postulates). For each I ∈ I , the following conditions hold.

(i) Weak Order: %I is complete and transitive.

(ii) Archimedean: For any f, g, h ∈ F , if f �I g and g �I h, then there are α, β ∈

(0, 1) such that αf + (1− α)h �I g and g �I βf + (1− β)h.

(iii) Monotonicity: For any f, g ∈ F , if f(s) %I g(s) for each s ∈ S, then f %I g.

(iv) Nontriviality: There are f, g ∈ F such that f �I g.

(v) Independence: For any f, g, h ∈ F and α ∈ (0, 1], f %I g if and only if αf +

(1− α)h %I αg + (1− α)h.

14



The next two axioms ensure that the DM forms a new belief that is consistent

with the available information. To express our next axiom, Compliance, we need

additional notation. For any f ∈ F and π ∈ ∆(S), we denote by π(f) ∈ ∆(X) the

lottery that yields the outcomes of f according to the probability distribution π; i.e.,

π(f)(x) = π({s ∈ S | f(s) = x}) for each x ∈ X.

Axiom 2 (Compliance). For any f ∈ F and π ∈ ∆(S), f ∼π π(f).

Compliance requires that the DM adheres to precise information when it is pro-

vided. That is, whenever the new piece of information is a singleton I = {π} for some

π ∈ ∆(S), the DM’s belief conforms to π. One way to think of this axiom is to imagine

a patient visiting her doctor and inquiring about a treatment. If the doctor provides

extremely precise information about the treatment and the chances of success or failure,

the patient accepts this information completely and adopts the doctor’s information as

her beliefs about the states. Compliance resembles consequentialism (see Ghirardato

(2002)) in dynamic settings under uncertainty.

To formally state the next axiom, we first define a weak notion of equivalent infor-

mation sets. Given two sets of information I and I ′, we say that they are preference

equivalent if %I=%I′ (that is, f %I g if and only if f %I′ g for all f, g ∈ F ). In this

case, we may also say that %I and %I′ are equivalent. Our next axiom, Responsive-

ness, requires that the DM’s preferences “respond” to the information. Consider two

information sets I and I ′. If these sets of information are preference equivalent (i.e., %I

and %I′ are equivalent), so that the DM responds to them in the same way, then these

two pieces of information must have some “common information” (i.e., I ∩ I ′ 6= ∅).

Axiom 3 (Responsiveness). For any I, I ′ ∈ I , if %I=%I′ , then I ∩ I ′ 6= ∅.

Another way to understand this condition is to consider the contrapositive: mutually

exclusive sets of information should never be preference equivalent.
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Under Axioms 1, 2, and 3, a family of preference relations {%I}I∈I admits a SEU

representation,
(
(uI , µI)I∈I

)
, with µI ∈ I for all I. We call such a family Information-

Dependent SEU preferences. Notice that the initial preference % and new preferences

%I may be unrelated. In particular, (i) the DM’s risk attitudes may vary across dif-

ferent pieces of information and (ii) the DM may form a new belief that is completely

independent of the initial belief.

The goal of our next few axioms is to connect the conditional preferences with the

initial one in a systematic way. The next axiom, Invariant Risk Preference, requires

that the DM’s preference over lotteries does not change when information is provided.

Axiom 4 (Invariant Risk Preference). For any I ∈ I and all lotteries p, q ∈ ∆(X),

p %I q if and only if p % q.

This postulate ensures that for each I ∈ I, the expected utility function uI is a

positive, affine transformation of the initial utility function u. Hence, we can normalize

the utility functions, and the family of Information-Dependent SEU preferences {%I}I∈I

is characterized by
(
u, (µI)I∈I

)
.

The next axiom, Informational Betweenness, is the most important behavioral

condition for our model. Loosely, Informational Betweenness implies a form of “be-

lief consistency” across various information sets. For an intuition behind Informational

Betweenness, consider E ⊆ S and let I1 = {π ∈ ∆(S) | π(E) ≥ 1
2
} be the information

“E is more likely than Ec.” This may alter the DM’s preferences regarding bets on E.

Suppose that the more refined information, I2 = {π ∈ ∆(S) | 3
4
≥ π(E) ≥ 1

2
}, induces

the same conditional preferences regarding bets on E. This suggests that the DM’s

willingness to bet on E is not dependent on the upper bound of I2 (e.g., because it is

determined by the lower bound placed on the probability of E), and so any information

set of the form I3 = {π ∈ ∆(S) | β ≥ π(E) ≥ 1
2
} should yield exactly the same willing-

ness to bet on E as I1 for any β ∈ [3
4
, 1]. Informational Betweenness extends this
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idea to more general information sets.

µ

s3

s2s1

I1

I2

I ′

µ

s3

s2s1

I

I ′

Figure 2: Illustrations of Informational Betweenness (left) and Extremeness (right).

Axiom 5 (Informational Betweenness). For all I1, I2, I
′ ∈ I such that I2 ⊆ I ′ ⊆ I1,

if %I1=%I2 , then %I1=%I′ .

In other words, Informational Betweenness requires that if the least precise

and most precise information sets, I1 and I2, provide “the same information” (i.e., are

behaviorally equivalent), then any intermediate information set, I3, must also provide

the same information as these two sets. This logic is illustrated in Figure 2.

At this point, it is worth remarking that Informational Betweenness captures

most of the behavioral content of MDSEU. That is, consider the family of Information-

Dependent SEU preferences {%I}I∈I characterized by
(
u, (µI)I∈I

)
. Under Informa-

tional Betweenness, it turns out that µI is the minimizer of some (complete and

transitive) ordering, which, of course, depends on the prior µ. To ensure this order is

consistent with a distance function, we require two technical conditions, Extremeness

and Continuity.

For an intuition behind Extremeness, imagine that the DM exhibits a change in

behavior after learning I; she finds I to be “informative” and changes her beliefs (%I 6=%).

Then, any “more informative” I ′ must similarly result in additional changes in behavior
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(%I′ 6=%I). In other words, a DM who adjusts her beliefs after some information I must

continue to move her beliefs when you present her with any strictly more informative

information set I ′. As we have seen in our discussion of Informational Betweenness,

being a (strict) subset is not sufficient for the DM to perceive a set of information as more

informative because the information sets may intersect at the chosen belief. Drawing on

this insight, we suggest that interiority is the correct notion of “more informative.” This

logic is illustrated in Figure 2. Formally, for any I, let int(I) be the interior of I.8

Axiom 6 (Extremeness). For any convex I, I ′ ∈ I with I ′ ⊆ int(I), if %I 6=%, then

%I′ 6=%I .

Our last postulate, Continuity, ensures that conditional preferences change in a

continuous fashion with respect to the provided information.9

Axiom 7 (Continuity). For any two sequences {Ik}, {Jk} in I such that Ik → I and

Jk → J , if %Ik=%Jk for each k, then %I=%J .

Theorem 1. A family of preference relations {%I}I∈I satisfies Axioms 1 through 7

if and only if it admits a Minimum Distance SEU representation with respect to

some locally nonsatiated distance function dµ and its continuous tie-breaker d̂µ such that

(dµ, d̂µ) is upper semicontinuous.

By the uniqueness of subjective expected utility representations, u, µ, and µI are

unique. We obtain two forms of ordinal uniqueness for the distance notions. First, the

set of minimizers of the distance functions must be “consistent.” This means that there

are no probabilities with opposite, strict ranking in terms of distance: d′µ(π′) > d′µ(π)

and d′µ(π) > dµ(π′) may not happen for any π, π′. Second, tie-breaking rules must be

ordinally equivalent. This is summarized in the following proposition.

8More formally, int(I) = {π ∈ I | ∃ε > 0 such that B(π, ε) ⊆ I} where B(π, ε) = {π′ ∈ ∆ |
‖π − π′‖ ≤ ε}.

9We endow I with the Hausdorff topology. The Hausdorff distance between information sets I and
I ′ is given by h(I, I ′) ≡ max{maxπ∈I minπ′∈I′ ‖π − π′‖,maxπ′∈I′ minπ∈I ‖π − π′‖}.

18



Proposition 1. Suppose the family of preference relations {%I}I∈I admits MDSEU

representations with (u, dµ, d̂µ) and (u′, d′µ′ , d̂
′
µ′). Then (i) u = αu′ + β for some α, β

with α > 0, (ii) µ = µ′, (iii) arg min d̂µ(arg min dµ(I)) = arg min d̂′µ′(arg min d′µ′(I))

for each I ∈ I , and (iv) d̂µ and d̂′µ′ are ordinally equivalent, i.e., for any π, π′ ∈ ∆,

d̂µ(π) > d̂µ(π′) if and only if d̂′µ′(π) > d̂µ′(π
′).

4 Bayesian Updating with General Information

In section 2.4, we defined Generalized Bayesian Divergence, a distance notion that

leads to posteriors consistent with Bayesian updating on standard events. In this section,

we show that these are essentially the only distance notions that lead to a version of

Bayesian updating defined for general information.

We say that E ⊆ S is %-null if fEg ∼ g for all f, g ∈ F , otherwise E is %-nonnull.

We extend this definition to conditional preferences in the natural way.

Recall our notion of an α-event; information sets of the form: IαE ≡ {π ∈ ∆ | π(E) =

α} for some E ⊆ S. In the standard setting, revealing that a nonnull event E occurred

(i.e., α = 1) induces a Bayesian DM to revise her prior µ by proportionally allocating

all probability mass among states in E; i.e., πi = µi
µ(E)

. This principle of proportionality

ought to apply to more general information sets, including all α-events IαE. That is, a

Bayesian DM should allocate the given probability α among states in E in such a way

that preserves relative probabilities. Thus, updated beliefs will still be proportional to

her prior, πi = µi
µ(E)

α. We call this updating procedure Extended Bayesian Updating

(henceforth, EBU), which we formally define below.

Definition 9 (Extended Bayesian Updating). Beliefs satisfy Extended Bayesian
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Updating if for any E ⊆ S with µ(E) > 0, s ∈ E, and α ∈ (0, 1],

µIαE(s) =
µ(s)

µ(E)
α.

EBU is illustrated in Figure 3. The dashed line can be thought of as the “Bayesian

expansion path” of beliefs µ. That is, EBU ensures that for any α, posterior beliefs after

the Iα{s2,s3} information set must lie on this dashed line.

µ

s3

s2s1

I1E

µI1
E

I0.8E

µI0.8
E

Figure 3: Bayesian expansion path of µ and Iα{s2,s3}, for α = 0.8 and α = 1.

For the standard notion of information as an event, it is well-known that dynamic

consistency characterizes Bayesian updating (see Epstein and Breton (1993) and Ghi-

rardato (2002)). However, as our setting allows for more general information, we need to

extend dynamic consistency beyond standard events. The key axiom, called Informa-

tional Dynamic Consistency (IDC), requires that if a DM prefers act f to act g before

she receives any information and the two acts coincide outside of E (i.e., f(s) = g(s)

for all s ∈ Ec), then she prefers f to g after the information set IαE is revealed, and vice

versa. Obviously, IDC corresponds to the standard notion of dynamic consistency when

α = 1.

Axiom 8 (Informational Dynamic Consistency). For all acts f, g, h ∈ F , any %-
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nonnull event E ⊆ S, and α ∈ (0, 1],

(10) fEh % gEh if and only if fEh %IαE
gEh.

It turns out that within the class of MDSEU preferences, Informational Dynamic

Consistency fully characterizes Extended Bayesian Updating.

Proposition 2. Let {%I}I∈I be a family of MDSEU preferences. Then, {%I}I∈I sat-

isfy Informational Dynamic Consistency if and only if beliefs exhibit Extended

Bayesian Updating.

When an information set IαE is revealed, a DM following EBU allocates α among the

states in E in a proportional manner and the remaining probability mass, 1−α, among

the states in the complementary event Ec. This implies that all %-null states remain

%IαE
-null after receiving information IαE.

We now formally show that under some minor technical conditions on the distance

function dµ, Informational Dynamic Consistency essentially characterizes the fam-

ily of Generalized Bayesian Divergence distance functions.

Proposition 3. Suppose dµ(π) =
∑n

i=1 di(πi) with d′′i > 0 for each i. If Informa-

tional Dynamic Consistency is satisfied, then there is a Generalized Bayesian

Divergence, σ, such that dµ(π) =
∑n

i=1 µi σ(πi
µi

) when π ∈ ∆ ∩ [0, 1
2
]n.

4.1 Bayesian Disagreement

While the previous results shed light on the general structure of Bayesian distance (i.e.,

it must be a Generalized Bayesian Divergence), they also show that there is no

unique “Bayesian distance.” Indeed, any σ satisfying the requirements in Definition 6

generates posteriors consistent with EBU on α-events. This lack of uniqueness, therefore,
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Figure 4: Bayesian disagreement between π and π′.

leaves open the possibility that on “irregular” information sets (e.g., those that do not

correspond to α-events), Bayesian DM’s may disagree.

To see why disagreement arises, consider any Generalized Bayesian Divergence.

The properties on σ ensure that for any α-event, the DM always shifts weight proportion-

ally across states. Put another way, dynamic consistency places restrictions on beliefs

after information sets that are “event-like.” Crucially, such information does not fun-

damentally challenge the DM’s beliefs about the relative likelihood of states. However,

information that is not “event-like” may necessitate the revision of relative likelihoods

by the DM. When information sets preclude proportional shifts, the specifics of the

distance function matter.

4.1.1 Polarization

To illustrate polarization, imagine two policy makers, Alice and Bob, trying to under-

stand the risks of climate change. They begin with the same beliefs and consult a panel

of scientists. The panel advises that there are two accepted models, π and π′. Thus,

Alice and Bob have both been provided with the information set I = {π, π′}. As they

are both MDSEU DMs, each will each adopt one of these models as his or her new belief.

Alice and Bob will agree after (binary) information sets I if and only if their distance
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functions are ordinally equivalent. This is much more demanding than requiring that

they are, individually, Bayesian agents. Indeed, Figure 4 illustrates two iso-distance

curves. The blue curve implies that µ is closer to π′ than π, while the red curve implies

the opposite. Importantly, the curves intersect on the Bayesian expansion path of µ,

and so they both generate Bayesian posteriors on α-events.

More concretely, suppose that there are three states, S = {s1, s2, s3}, and that

Alice and Bob agree on their prior, µA = µB = (0.4, 0.3, 0.3). They differ, however, in

how they judge information. Let Alice’s distance be dAµ (π) = −
∑

i µi ln(πi
µi

) and Bob’s

distance be dBµ (π) = −
∑

i µi(
πi
µi

)
1
2 . Note that these are both examples of Generalized

Bayesian Divergence, and so Alice and Bob satisfy IDC and will agree after every

α-event. However, consider π = (0.3, 0.375, 0.325) and π′ = (0.335, 0.405, 0.26). Since

neither π nor π′ lie on the Bayesian expansion path of µ (illustrated in Figure 4), IDC

places no restriction on posterior beliefs. In this instance, Alice will adopt π, while Bob

adopts π′.

4.1.2 Trade and Public Information

In economies with Bayesian traders who share a common prior over the states, neither

public nor private information generates incentives to re-trade Pareto-efficient alloca-

tions (see Milgrom and Stokey, 1982; Morris, 1994). In particular, if the initial Pareto

allocation has the full-insurance property and the traders receive public information

about events that occurred, there will be no trade. This “no-trade” result extends to α-

events when DMs distances are Generalized Bayesian Divergence. However, when

publicly available information is more general, speculative trade is possible.

To illustrate, consider a pure-exchange economy under uncertainty with S = {s1, s2, s3}.

Two traders, Alice and Bob, share a common prior over S given by µ = (0.5, 0.3, 0.2).

An allocation f = (fA, fB) is a tuple of state-contingent consumption of one commodity
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(i.e., f i ∈ R3
+ with i ∈ {A,B}). Both traders are MD-SEU maximizers with respect

to the same (strictly) concave utility function, uA(x) = uB(x) =
√
x for any x ∈ R+.

However, they have different (Bayesian) distance functions dAµ (π) = −
∑

i µi ln(πi
µi

) and

let dBµ (π) = −
∑

i µi(
πi
µi

)
1
2 . The initial allocation is the full-insurance allocation: eA =

eB = (5, 5, 5).

Suppose that the Bayesian traders learn publicly that probability of an event E is α.

Since IαE crosses the Bayesian-expansion path, both traders choose the same posterior.

Thus, the full-insurance allocation remains efficient after updating. Due to common

posteriors in the presence of publicly available α-events, there will be no-trade among

the Bayesian traders.

Now, suppose there are two research institutes that provide likelihood estimates

for the economy. In their annual reports, both institutes publish different probability

estimates: π1 = {0.25, 0, 25, 0.5} and π2 = {0.2, 0.4, 0.4}. Will such information generate

trade?

Alice updates the common prior by selecting π1 while Bob chooses π2 as his new

belief.10 Since both traders disagree on their posteriors, a Pareto improving exchange is

possible. For instance, the feasible allocation fA = (5.15, 3.5, 6) and fB = (4.85, 6.5, 4)

makes both traders strictly better off than the full-insurance allocation.11 Notice that

the trade leading to the Pareto-superior allocation (fA, fB) is not driven by risk sharing

but by speculative motives. Put differently, both traders are willing to abandon the

full-insurance allocation in order to bet against each other by purchasing assets that

correspond to the transfers (fA − eA) and (fB − eB). Gilboa et al. (2014) call such

trades “speculative” Pareto improvement bets.12

10We have that dAµ (π1) = 0.29 < 0.23 = dAµ (π2) and dBµ (π1) = −0.94 > −0.95 = dBµ (π2)
110.25 ·

√
5.15 + 0.25 ·

√
3.5 + 0.5 ·

√
6 = 2.26 > 2.236 =

√
5 and 0.2 ·

√
4.85 + 0.8(·

√
6.5 + ·

√
4) =

2.26 > 2.236.
12Gilboa et al. (2014) distinguish between Pareto improvements due to betting and due to risk-sharing.

An allocation f is called a bet if f Pareto dominates another allocation g with the full-insurance property.

24



4.2 Zero-probability Events and Hypothesis Testing

One of the well-known weaknesses of Bayesian updating is that it is not defined for zero-

probability events. In contrast, our notion of belief updating is well-defined for zero-

probability events. Thus, MDSEU provides a way to extend (non-)Bayesian updating

to all events.

A recent addition to the literature on updating after zero-probability events is the

Hypothesis Testing model (HT) of Ortoleva (2012).13 Such an agent will update using

Bayes’ rule for expected events: events with probability above some threshold ε. When

an event E is unexpected (i.e., under the agent’s prior µ(E) ≤ ε), the agent rejects her

prior, updates a second-order prior over beliefs, and selects a new belief according to

a maximum likelihood procedure. Formally, a HT representation is given by a triple,

(µ, ρ, ε), consisting of a prior µ ∈ ∆(S), a second order prior ρ ∈ int
(
∆(∆(S))

)
and a

threshold ε ∈ [0, 1). Then, for any E ⊆ S and s ∈ E,

µE(s) =


µ(s)
µ(E)

when µ(E) > ε,

πρE(s)

πρE(E)
when µ(E) ≤ ε

where πρE = arg maxπ∈∆ ρ(π)π(E).

As it turns out, HT may be viewed as special case of the MDSEU. We show this by

explicitly constructing a distance function that is behaviorally equivalent to a given HT

representation on standard events.

For an intuition behind the construction of this distance, note that HT involves

“multiple” beliefs and is non-Bayesian only for certain events (e.g., unexpected events).

For simplicity, consider the case of ε = 0. Then, an event is expected if it is given positive

13There are other models that allow for conditioning on zero-probability events, such as the condi-
tional probability systems introduced by Myerson (1986a,b) and the conditional lexicograhic probability
systems axiomatized by Blume et al. (1991).
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probability by the prior, and so an event is surprising if and only if it was considered

“impossible” under the prior. Thus, the support of the event and prior have a non-

empty intersection in the former case and are disjoint in the latter. Correspondingly, the

distance function must distinguish between potential beliefs with over-lapping supports

and non-overlapping supports. However, once this restriction is accommodated, the

distance function is almost Bayesian.

For any π ∈ ∆(S), let sp(π) denote the support of π.

Proposition 4. Consider a Hypothesis Testing representation, (µ, ρ, ε). Further, sup-

pose that for each π ∈ sp(ρ), π 6= µ, sp(π) = S and that ρ(π) 6= ρ(π′) for any two

distinct π, π′ ∈ ∆. Then let

dµ(π̃) =


−
∑

s∈sp(π̃) µ(s) log(π̃(s))−M |{sp(π̃) ∩ sp(µ)}| if µ(sp(π̃)) > ε,

−
∑

s∈sp(π̃) π
ρ
sp(π)(s) log(π̃(s)) +M(|S|+ 1− |sp(π̃)|) if µ(sp(π̃)) ≤ ε.

If M is large enough, then for any E ⊆ S and s ∈ E,

µI1E(s) =


µ(s)
µ(E)

when µ(E) > ε,

πρE(s)

πρE(E)
when µ(E) ≤ ε.

The details of this construction can be found in Appendix section A.5.

5 Recovering Distance Functions

In order to operationalize MDSEU, we show how to recover the underlying distance

function for a particular model of updating from the standard framework. That is,

consider a standard event (signal) structure on a set of states and some updating rule.

We show how to construct a distance function in the MDSEU framework that coincides
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with this updating rule on information sets that are “equivalent” to the events (signals).

Proposition 5. Suppose dµ has an additive form: dµ(π) =
∑n

i=1 fi(πi). Further, sup-

pose there is a function g : [0, 1]→ [0, 1] such that gi(α) = µIα{s1,si}
(si) for each α ∈ [0, 1]

and that g−1
i exists. Then for some function f ,

dµ(π) = f(π1) +
n∑
t=2

∫ πi

0

f ′(g−1
i (t)− t)dt for any π ∈ [0, 1]×

n∏
i=1

[0, gi(1)].

Mathematically, the problem of recovering a distance function is related to the clas-

sic problem of recovering utility from demand. Therefore, the technical assumptions

regarding separability are similar. Here, gi(α) is a function that specifies the probability

allocated to state i when the DM splits α probability between si and s1. We illustrate

how this can be used by explicitly deriving the h-Bayesian distance in the following

section.

5.1 Constructing Non-Bayesian Distance Functions

Since we already know the general structure of Bayesian distance functions, the primary

use of Proposition 5 is to enable the construction of non-Bayesian distance functions.

This allows us to extend “standard” rules to general information. As an illustration,

suppose that we want to find a distance function that yields, for each A ⊆ S, the

following generalization of Bayes’ rule:

πAi =
hi(µi)∑
j∈A hj(µj)

.

First, we can naturally extend this to α-events in our setting, so that

µIαA(si) = α
hi(µi)∑
j∈A hj(µj)

.
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Note that this corresponds to h-Bayesian updating. Then we define gi(α) = α hi(µi)
h1(µ1)+hi(µi)

.

Hence g−1
i (t) = t(1 + h1(µ1)

hi(µi)
), and using Proposition 5 we determine

dµ(π) = f(π1) +
n∑
t=2

∫ πi

0

f ′(g−1
i (t)− t)dt

= f(π1) +
n∑
t=2

∫ πi

0

f ′(t
h1(µ1)

hi(µi)
)dt = f(π1) +

n∑
t=2

hi(µi)

h1(µ1)
f(πi

h1(µ1)

hi(µi)
).

Letting d(t) = f(t h1(µ1))
h1(µ1)

, we derive dµ(π) =
∑n

i=1 hi(µi)d( πi
hi(µi)

), as in Definition 7.

5.2 Non-Bayesian Behavior

While the MDSEU provides a structured way to extend “Bayesian updating” to general

information sets, it also allows for a variety of distance notions that generate familiar

models of non-Bayesian updating. In this way, the MDSEU framework contextualizes

non-Bayesian behavior as merely the result of different notions of distance. For instance,

consider the following generalization of Bayes’ rule. For ρ > 0,

µI1E(s) =
(µ(s))ρ∑
s′∈E(µ(s′))ρ

when s ∈ E.

This corresponds to a special case of h-Bayesian distance function, where hi(µi) =

(µi)
ρ. This notion of distance is a special case of the non-Bayesian model introduced by

Grether (1980) and can capture over- and under-inference from signals.

As an illustration, consider a stylized learning experiment with two payoff-relevant

states P = {A,B} and two signals Θ = {a, b}; the state space is S = P × Θ. Let

Ia = {π : π(S×{a}) = 1} and Ib = {π : π(S×{b}) = 1} denote the general information

sets “there was an a signal” and “there was a b signal,” respectively. Let σ(a|A) :=

µ(A,a)
µ(A,a)+µ(A,b)

= βA > 1
2

denote the conditional probability of an a signal, while µ(A) =

µ(A, a) + µ(A, b) is the unconditional probability of payoff state A. We extend this to b
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and B in the natural way. Upon learning Ia,

µIa(A|a) =
µ(A, a)ρ

µ(A, a)ρ + µ(B, a)ρ
=

σ(a|A)ρµ(A)ρ

σ(a|A)ρµ(A)ρ + σ(a|B)ρµ(B)ρ
.

For ρ = 1, we have Bayesian updating. For ρ < 1, this captures aspects of both under-

inference and base-rate neglect, which are both commonly observed. In the reverse case,

ρ > 1, we capture over-inference and over-reliance on priors.14 Therefore, the MDSEU

framework allows us to extend non-Bayesian updating to general information.

6 Related Literature

There are a few papers that develop a theory of belief updating for general information

structures. Perhaps the first to study general information was Damiano (2006), who

studies the (non)existence of belief selection rules with various properties.15 In a similar

spirit to Damiano (2006), Chambers and Hayashi (2010) prove the non-existence of a

selection rule satisfying a particular form of Bayesian consistency. In contrast, we focus

on the behavioral implications of a particular selection rule: distance minimization.

As far as we are aware, the first paper to combine general information and distance

minimization is Zhao (2020), who considers environments in which a DM receives a

sequence of qualitative statements of the form “event A is more likely than event B.”

The DM has a probabilistic belief and updates it via the so-called Pseudo-Bayesian

updating rule.16 There are three key differences between Zhao (2020) and our paper.

14See Benjamin (2019) for an excellent discussion regarding both under- and over-inference.
15In particular, he shows that there is no selection rule that satisfies three properties: state-

independence, location-consistency, and update-consistency.
16The pseudo-Bayesian updating rule is axiomatized by two axioms, Exchangeability and Stationarity,

directly imposed on posteriors. Exchangeability requires that the order of information does not matter
as long as the DM receives qualitative statements that “neither reinforce nor contradict each other.”
Stationarity requires that the DM’s beliefs do not change when a qualitative statement is consistent
with the prior.
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First, he focuses on Kullback-Leibler divergence while we allow general distance. Thus,

his model coincides with Bayesian updating on standard events, while we allow non-

Bayesian updating. Second, he focuses on a specific form of general information, “A is

more likely than B,” while we do not restrict information. In particular, this means that

we allow for zero-probability events. Third, his axioms are on beliefs, while ours are on

preferences.

Other papers that feature general information include Gajdos et al. (2008), Do-

miniak and Lefort (2020) as well as Ok and Savaockin (2020). These papers study the

embedding of general information under more general preferences than SEU. In Ok and

Savaockin (2020), an agent ranks “info-acts” (µ, f), which consist of a probability distri-

bution µ over S and a (Savage) act f . They characterize the notion of probabilistically

amenable preferences: the agent adopts µ as her own belief, and evaluates act f via the

lottery induced by µ over the outcomes of f , although lotteries may not be evaluated by

expected utility.17 In their setting, each act might be evaluated with respect to a differ-

ent probability distribution. In our model, when an info-event I = {µ} is a singleton,

Compliance ensures that a SEU maximizer adopts µ to evaluate all acts.

Gajdos et al. (2008) studies preferences defined over more general “info-acts” (P, f)

where P is a set of probability distributions P ⊆ ∆(S). They characterize a representa-

tion in which an ambiguity-averse agent selects a set of priors ϕ(P ) ⊆ ∆(S) to evalulate

f via the Maxmin-criterion, and derive conditions for ϕ(P ) to be consistent with P

(i.e., ϕ(P ) ⊆ P ). In situations where P specifies probabilities for some events (e.g.,

P = IαE), Dominiak and Lefort (2020) show that depending on whether an ambiguity-

averse agent “selects” her priors from the objective set ∆(S) or the exogenous set P

will fundamentally affect her preference, being either consistent with Machina’s (2012)

17Probabilistically amenable preferences are weaker than the probabilistically sophisticated prefer-
ences introduced by Machina and Schmeidler (1992) as they do not need to be complete, continuous
and consistent with respect to first-order stochastic dominance.
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intriguing behavior or not.

The literature on updating with standard information, i.e., events, is much larger.

Within this environment, a few papers have studied minimum distance updating rules.

Perea (2009) axiomatizes imaging rules, which are minimum distance rules utilizing

Euclidean distance. Under imaging, for each E ⊆ S a posterior π is selected that

minimizes dµ(π) = ‖φ(µ)−φ(π)‖, where π ∈ ∆(E) and φ is an affine function. Our model

includes this as a special case. More recently, Basu (2019) studies AGM (Alchourrón

et al., 1985) belief revision in a standard environment. Within this setting, he establishes

an equivalence between updating rules that are AGM-consistent, Bayesian, and weak

path independent and lexicographic updating rules. He then turns to minimum distance

updating rules and shows that every support-dependent lexicographic updating rule

admits a minimum distance representation. In contrast, we focus on minimum distance

updating rules with general information and allow for non-Bayesian updating.

As we have shown, our model can capture some forms of non-Bayesian updating,

which has a large literature (see Benjamin (2019) for an excellent summary of experimen-

tal findings and behavioral models). Some axiomatic papers on non-Bayesian updating

include Epstein (2006) and Epstein et al. (2008). Both papers utilize Gul and Pesendor-

fer (2001)’s theory of temptation to study a DM who may be tempted to use a posterior

that is inconsistent with Bayesian updating. More recently, Kovach (2020) utilizes the

conditional preference approach and characterizes conservative updating : posterior be-

liefs are a convex combination of the prior and the Bayesian posterior. This behavior

violates consequentialism (i.e., Compliance), and therefore cannot be accommodated

by our model.
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A Proofs of Main Results

A.1 Proof of Theorem 1

Sufficiency. We first prove sufficiency. Consider a family of preferences {%I}I∈I that

satisfies SEU Postulates, Compliance, Responsiveness, Invariant Risk Prefer-

ence, Informational Betweenness, Extremeness, and Continuity.

Notations. For any set A and a preference relation % on A, let min(A,%) ≡ {x ∈

A|y % x for any y ∈ A}. For any π, π′ ∈ ∆(S), let [π, π′] ≡ {απ + (1− α)π′|α ∈ [0, 1]}.

Step 0. By SEU Postulates, for each I ∈ I , the conditional preference relation

%I admits a (conditional) SEU representation with some (uI , µI), an expected utility

function uI : X → R, and a probability distribution µI ∈ ∆(S). As usual, uI is unique

up to a positive transformation, and µI is unique. Let u = u∆(S) and µ = µ∆(S).

Step 1. (uI = u). Take I ∈ I and consider % and %I . By Step 0, for all p, q ∈ ∆(X),

(11) p % q if and only if u(p) ≥ u(q) and p %I q if and only if uI(p) ≥ uI(q).

By Invariant Risk Preference,

(12) u(p) ≥ u(q) if and only if uI(p) ≥ uI(q).

Hence, uI is a positive and affine transfromation of u; i.e., there are a ∈ R and b > 0

such that uI(p) = a+bu(p) for all p ∈ ∆(X). Without loss generality, we can set uI := u

for each I ∈ I .

Step 2. (µπ = π). Take a probability distribution π ∈ ∆(S) and let I = {π} be a
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singleton set. By Compliance and Step 0, for any f ∈ F ,

(13) f ∼{π} π(f) if and only if
∑
s∈S

µπ(s)u(f(s)) =
∑
s∈S

π(s)u(f(s)).

By the uniqueness of u and µπ and Step 1, we have µπ = π.

Step 3. (µI ∈ I). Take I ∈ I . By Step 0, %I is a SEU preference with respect some

probability measure µI ∈ ∆(S). Define I ′ = {µI}. By Step 2, µI′ = µI . Hence, %I and

%I′ are equivalent. Then, by Responsiveness, I ∩ I ′ 6= ∅. Therefore, we have µI ∈ I.

We define a mapping C : I → ∆(S) such that for any I ∈ I , C(I) = µI . Since

C(I) ∈ I, mapping C is a choice function on I .

Step 4. C satisfies Sen’s α-property. That is, for any I, I ′ with I ′ ⊂ I and π ∈ I ′, if

π = C(I), then π = C(I ′).

Let I1 = I and I2 = {π}. Note that I2 ⊆ I ′ ⊆ I1 and π = C(I) implies that

%I1=%I2 . By Informational Betweenness, %I1=%I′ , equivalently, π = C(I ′).

Revealed Preference 1. Define %∗ as follows: for any distinct π, π′ ∈ ∆(S), π′ �∗ π

if π = C({π, π′}) and π ∼∗ π. Note that %∗ is a strict preference relation.

Step 5. Since C is a choice function and satisfies Sen’s α-property, %∗ is complete and

transitive preference relation. Moreover, C(I) = min(I,%∗).

Let µ ≡ min(∆(S),%∗).

Step 6. Take any convex I ∈ I and π ∈ int(I). Note that %I 6=% iff µI 6= µ.

Since µI = min(I,%∗) and µ ≡ min(∆(S),%∗), then %I 6=% iff µ 6∈ I. Therefore, by

Extremeness, µ 6∈ I implies %π 6=%I ; equivalently, µI 6= π. Therefore, µI 6∈ int(I) when

µ 6∈ I. In other words, µ 6∈ I implies µI ∈ ∂(I) = I \ int(I), the boundary of I.
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Step 7. %∗ is continuous. That is, for any π ∈ ∆(S), U(π) = {π′ ∈ ∆(S)|π′ %∗ π}

and L(π) = {π′ ∈ ∆(S)|π %∗ π′} are closed. Therefore, there is a continuous function

d̂ : ∆(S) → R that represents %∗. Note that %∗ is a strict preference relation, d̂ is

injective.

Take any π ∈ ∆(S). Take a sequence {πk}k∈N in U(π) such that πk → π∗. Consider

two cases. First, suppose πk = π for infinitely many k. Then π∗ = π. Hence, π∗ %∗ π;

i.e., π∗ ∈ U(π). Second, suppose there is some N such that πk �∗ π for any k > N .

Then C({πk, π}) = π for any k > N . Since {πk, π} → {π∗, π} and π → π, by Continuity

we have C({π∗, π}) = π; i.e., π∗ � π.

Similarly, Take a sequence {πk}k∈N in L(π) such that πk → π∗. Consider two cases.

First, suppose πk = π for infinitely many k. Then π∗ = π. Hence, π %∗ π∗; i.e.,

π∗ ∈ L(π). Second, suppose there is some N such that π �∗ πk for any k > N . Then

C({πk, π}) = πk for any k > N . Since {πk, π} → {π∗, π} and πk → π∗, by Continuity

we have C({π∗, π}) = π∗; i.e., π � π∗.

Revealed Preference 2. Define %∗∗ as follows: for any π, π′ ∈ ∆(S), π′ %∗∗ π if

π = C({π, π′}) and π �∗∗ π′ if π = C([π, π′]).

Step 8. %∗∗ is acyclic; that is, there is no sequence π1, . . . , πm such that πi %∗∗ πi+1 for

each i ≤ m− 1 and πm �∗∗ π1.

Take any π1, . . . , πm such that πi %∗∗ πi+1 for each i ≤ m−1. Note that πi %∗∗ πi+1

implies πi �∗ πi+1. Since �∗ is complete and transitive, we have π1 �∗ π1. Hence,

¬πm �∗∗ π1.

Step 9. There is a function d : ∆(S)→ [0, 1] such that (i) d(π) ≤ d(π′) if C(π, π′) = π,

and (ii) d(π) < d(π′) if C([π, π′]) = π.

Step 9.1. Let us construct a countable subset Z of ∆(S) as follows.

Take any k. Since ∪π∈∆(S)B(π, 1
k
) = ∆(S), and ∆(S) is compact, there is a finite
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sequence π1,k, . . . , πmk,k such that ∪mki=1B(πi,k, 1
k
) = ∆(S). Let C(B(πi, 1

k
)) = zi,k. Note

that by Extremeness and Step 6, zi,k 6= πi, consequently, πi �∗∗ zi,k.

We now construct Zk for each k recursively. First, when k = 1, let Z1 = {z1,1, . . . , zm1,1}.

Now suppose we have constructed Zj, and we will construct Zj+1. Let Zj+1 = Zj ∪

{z1,j+1, . . . , zmj+1,j+1} ∪ Cj+1 where Cj+1 =
⋃
z∈Zj{C(B(z, 1

j+1
))}. Let Z =

⋃∞
k=1 Zk.

Since each Zk has finite elements, Z is countable.

Step 9.2. For any x, y ∈ ∆(S) with x �∗∗ y, then there is z ∈ Z such that x �∗∗ z and

z �∗ y.

Take any k. Since ∪mki=1B(πi,k, 1
k
) = ∆(S), x ∈ B(πi,k, 1

k
) for some i. Therefore,

either x �∗∗ zi,k = C(B(πi,k, 1
k
)) or x = zi,k. When x �∗∗ zi,k = C(B(πi,k, 1

k
)), let

tk = zi,k. Note that tk ∈ Z. When x = zi,k, let tk = C(zi,k, 1
k+1

). By Extremeness,

tk 6= zi,k. Note that x = zi,k �∗∗ tk and tk ∈ Z.

Therefore, we have constructed tk ∈ Z such that x �∗∗ tk and ‖x − tk‖ ≤ 1
k
. If

C({tk, y}) = tk for each k, then by Continuity, we have C({x, y}) = x; i.e., we have

y �∗ x, a contradiction. Therefore, C({tk, y}) = y for some k. Therefore, we have

x �∗∗ tk and tk �∗ y for some tk ∈ Z.

Step 9.3. Since Z is countable, there is a utility function d : Z → [0, 1] such that for

any z, z′ ∈ Z,

d(z) > d(z′) if z �∗ z′.

Step 9.4. We now extend d to ∆(S) as follows.

For any x ∈ ∆(S) \ Z, let d(x) = sup{d(z)|x �∗ z for any z ∈ Z}.

Step 9.5. We now show that d : ∆(S)→ [0, 1] satisfies the following property: for any

x, x′ ∈ ∆(S),

d(x) > d(x′) if x �∗∗ x′ and d(x) ≥ d(x′) if x %∗ x′.
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Case 1. Take any x, x′ with x %∗ x′. If x, x ∈ Z, then by Step 2.3, the desired condition

is satisfied. If x′ ∈ Z and x 6∈ Z, then d(x) = sup{d(z)|x �∗ z and z ∈ Z} ≥ d(x′)

since x �∗ x′. If x ∈ Z and x′ 6∈ Z, then d(x) > d(z) for any z ∈ Z with x′ �∗ z

since x �∗ x′ �∗ z. Therefore, d(x) ≥ sup{d(z)|x′ �∗ z and z ∈ Z}. Finally, suppose

x, y ∈ ∆(S) \ Z. For any z ∈ Z, by transitive of %∗, x′ �∗ z implies x �∗ z. Therefore,

{z|x′ �∗ z} ⊆ {z|x �∗ z}. Hence, d(x) = sup{d(z)|x �∗ z for any z ∈ Z} ≥ d(x′) =

sup{d(z)|x′ �∗ z for any z ∈ Z}.

Case 2. Take any x, x′ with x �∗∗ x′. We shall show that d(x) > d(x′).

By Step 2.2, there is z ∈ Z such that x �∗∗ z and z �∗ x′. By applying Step 2.2 on

x and z, we have z′ ∈ Z such that x �∗∗ z′ and z′ �∗ z. Then by Case 1 and Step 2.3,

we have d(x) ≥ d(z′) > d(z) ≥ d(x′).

Step 9. Therefore, µI = arg minT
(

arg min d(I)
)
.

Since µI = C(I), π �∗ µ for any π ∈ I \ {µI}. By the construction of d, we have

d(µI) ≤ d(π) for any π ∈ I. Hence, µI ∈ arg min d(I). Therefore, since d̂ represents �∗

and µI ∈ arg min d(I), µI = arg min d̂
(

arg min d(I)
)
.

Step 10. d is a distance function and locally-nonsatiated with respect to µ. By the

construction of d, d̂ is a continuous tie-breaker function of d.

For any π ∈ ∆(S) \ {µ}, since µ = C(∆(S)) and [π, µ] ⊂ ∆(S), we have π �∗∗ µ.

By the construction of d, we have d(π) > d(µ) for any π ∈ ∆(S) \ {µ}.

Take any distinct π, π′ ∈ ∆(S) with d(π) = d(π)′. Let I = [π, π′] = {απ + (1 −

α)π′|α ∈ [0, 1]}. By the definitions of %∗∗, if µI = π, then we have u(π′) > u(π),

which contradicts the assumption that d(π) = d(π′). Similarly, if µI = π′, then we have

d(π) > d(π′), which contradicts the assumption that d(π) = d(π′). Finally, suppose

µI = απ + (1 − α)π′ for some α ∈ (0, 1). By Step 4, we have µI = µ[µI ,π] since

[µI , π] ⊆ I. Therefore, d(π) > d(µI) = d(απ + (1− α)π′).
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Now take any π 6= µ and ε > 0. If µ ∈ B(π, ε
2
), then µ is the desired alternative; i.e.,

‖µ− π‖ < ε and d(µ) < d(π). If µ 6∈ B(π, ε
2
), then π∗ = C(B(π, ε

2
)) is different from π

and µ by Extremeness. Hence, we found π∗ such that d(π) > d(π∗) and ‖π − π∗‖ < ε.

We now write dµ and d̂µ.

Step 11. For any convex information set I, µI = arg min dµ(I).

Since µI = arg min d̂µ(arg min dµ(I)) by Step 9, we have µI ∈ arg min dµ(I). Hence,

it is enough to show that arg min dµ(I) is singleton. By way of contradiction, suppose

there are distinct π, π′ ∈ arg min dµ(I). Note that π, π′ ∈ arg min dµ(I) implies dµ(π) =

dµ(π′). By the definition of distance preference relations, there is some α ∈ (0, 1) such

that dµ(π) > dµ(απ+(1−α)π′). Since I is convex, we have απ+(1−α)π′ ∈ I. Therefore,

dµ(π) > dµ(απ + (1− α)π′) contradicts the assumption that π ∈ arg min dµ(I).

Step 12. (dµ, d̂µ) is upper semicontinuous.

Take any sequences {πk}, {πk} with πk → π and πk → π. Note that if (dµ(πk), d̂µ(πk)) >

(dµ(πk, µ), d̂µ(πk)) for every k ∈ N, then C({πk, πk}) = πk for each k. By Continuity,

we have C({π, π}) = π; i.e., (dµ(π), d̂µ(π)) > (dµ(π), d̂µ(π)).

Necessity. Suppose the family of preference relations {%I}I∈I admits the MDSEU

representation with (u, dµ, d̂µ) where dµ is a locally nonsatiated distance function, d̂µ is

a continuous tie-breaker of d̂µ, and (dµ, d̂µ) is upper semicontinuous.

For each I ∈ I , %I satisfies SEU Postulates since it has a SEU representation.

Moreover, Invariant Risk Preference is satisfied since all SEU representations for

{%I}I∈I use the same Bernoulli utility function u.

Compliance. Take any f ∈ F and π ∈ ∆(S)(S). Since µ{π} = π, the expected utility of

f is
∑

s∈S π(s)u(f(s)) and the utility of π(f) is u(π(f)) =
∑

s∈S π(s)u(f(s)). Therefore,

f ∼π π(f).
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Responsiveness. Take any I, I ′ ∈ I with %I=%I′ . By the uniqueness of µI and µI′

in SEU, %I=%I′ implies that µI = µI′ . Since µI ∈ I and µI′ ∈ I ′, we have µI ∈ I ∩ I ′.

Hence, I ∩ I ′ 6= ∅.

Informational Betweenness. Take any I1, I2, I3 ∈ I such that I3 ⊆ I2 ⊆ I1

and %I1=%I3 . Note that %I1=%I3 implies that µI1 = arg min d̂µ(arg min dµ(I1)) =

arg min d̂µ(arg min dµ(I3)) = µI3 . Hence, µI1 ∈ I3. Since I3 ⊆ I2, µI1 ∈ I2. There-

fore, µI1 = arg min d̂µ(arg min dµ(I2)) since µI1 = arg min d̂µ(arg min dµ(I1, µ)) and µI1 ∈

I2 ⊆ I1. Hence, %I1=%I2 .

Extremeness. Take any convex I, I ′ ∈ I with I ′ ⊆ int(I) and %I 6=%. Note that

%I 6=% is equivalent to µ 6∈ I. We need to show that µI 6= µI′ , which is equivalent to

µI 6∈ I ′ since I ′ ⊂ I. Hence, we shall show that µI ∈ I \ I ′. Since I ′ ⊆ int(I), it it

sufficient to show that µI ∈ ∂I.

By way of contradiction, suppose µI ∈ int(I). Then there is ε > 0 such that

B(µI , ε) ⊂ int(I). By local nonsatiation of dµ and µ 6∈ I, there is µ′ ∈ B(µI , ε) such that

dµ(π′) < dµ(µI), which contradicts the fact that µI = arg min dµ(I).

Continuity. Take any two sequences {Ik}, {Jk} in I such that Ik → I, Jk → J , and

%Ik=%Jk for each k. Note that %Ik=%Jk is equivalent to µIk = µJk . Hence, it is sufficient

to show that µIk → µI and µJk → µJ .

Take any π ∈ I. Then there is a sequence {πk} such that πk ∈ Ik and πk →

π. Since µI = arg min d̂µ(arg min dµ(Ik)) and πk ∈ Ik, we have (dµ(µIk), d̂µ(µIk)) >

(dµ(πk), d̂µ(πk)) for each k. By upper semicontinuity, (dµ(µI), d̂µ(µI)) > (dµ(π), d̂µ(π)).

Hence π cannot be chosen over µI from I for any π ∈ I \ {µI}. Hence, µIn → µI .

Finally, we show that our model is well-defined as long as d̂µ is a continuous tie-

breaker of dµ. First, we show that arg min d̂µ(arg min dµ(I)) is nonempty. Since d̂µ is con-

tinuous and I is closed, by the Weierstrass theorem, arg min d̂µ(I) is not empty. Since d̂µ

is injective, arg min d̂µ is singleton. Let µI = arg min d̂µ(I). Since d̂µ is a tie-breaker func-
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tion, we have µI = arg min d̂µ(I) ⊆ arg min dµ(I). Therefore, arg min d̂µ(arg min dµ(I)) =

µI .

Suppose now I is convex. By the above argument, we have µI ∈ arg min dµ(I). To

show that µI ∈ arg min dµ(I), by way of contradiction, suppose there are distinct π, π′

such that π, π′ ∈ arg min dµ(I). Since dµ(π) = dµ(π′) and dµ is a distance function, there

is an α ∈ (0, 1) such that dµ(απ + (1 − α)π′) < dµ(π), which contradicts with the fact

that π ∈ arg min dµ(I).

A.2 Proof of Proposition 1

The uniqueness of u and µI are standard. Since µ = µ∆(S), µ is also unique. We now show

that d̂µ and d̂′µ′ are ordinally equivalent. As we proved in the necessity part of Theorem

1, µI = arg min d̂µ(I). Since µI is unique, we have arg min d̂µ(I) = arg min d̂′µ′(I). Take

any π, π′ ∈ ∆(S). Note that d̂µ(π) > d̂µ(π′) is equivalent to π′ = arg min d̂µ(I) where

I = {π, π′}. Then d̂µ(π) > d̂µ(π′) is equivalent to π′ = arg min d̂′µ′(I), which is equivalent

to d̂′µ′(π) > d̂µ′(π
′). Therefore, d̂µ(π) > d̂µ(π′) if and only if d̂′µ′(π) > d̂µ′(π

′).

A.3 Proof of Proposition 2

Proof. Take f, p, h ∈ F such that fEh ∼ pEh and fEh ∼IαE pEh. By the MDSEU

representation:

fEh ∼ pEh if and only if
∑
s∈E

µ(s)u(f(s)) = µ(E)u(p) and

fEh ∼IαE pEh if and only if
∑
s∈E

µI(s)u(f(s)) = µI(E)u(p).
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By Informational Dynamic Consistency, we thus have

1

µ(E)

∑
s∈E

µ(s)u(f(s)) =
1

µI(E)

∑
s∈E

µI(s)u(f(s))

which is equivalent to

µ(s)

µ(E)
=

µI(s)

µI(E)
=
µI(s)

α

for each s ∈ E.

A.4 Proof of Proposition 3

Proof. Without loss of generality, suppose µ1 = mini µi. Take any α ∈ [0, 1] and i. Let

I = IαE where E = {s1, si}. Consider the minimum distance updating with I:

min
π
d1(π1) + di(πi) s.t. π1 + πi = α.

The first order condition gives d′i(πi) = d′1(π1). The second order condition is satisfied

since d′′i > 0. Since Generalized Dynamic Consistency is satisfied, we have πi = α µi
µi+µ1

.

Then d′i(
µi

µi+µ1
α) = d′1( µ1

µ1+µi
α). Equivalently,

d′i(π) = d′1(
µ1

µi
π) for any π ∈ [0,

µi
µi + µ1

].

Since µi
µi+µ1

≥ 1
2
, the above holds for any π ≤ 1

2
. Note that

di(π)−di(0) =

∫ π

0

d′i(π̃)dπ̃ =

∫ π

0

d′1(
µ1

µi
π̃)dπ̃ =

µi
µ1

∫ µ1
µi
π

0

d′1(π̄)dπ̄ =
µi
µ1

(
d1(

µ1

µi
π)−d1(0)

)
.
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Therefore, di(π) = µi
µ1
d1(µ1

µi
π)+ci where ci = di(0)− µi

µ1
d1(0). Then the distance function

is given by

dµ(π) =
n∑
i=1

di(πi) =
n∑
i=1

µi
µ1

d1(
µ1

µi
πi) +

n∑
i=1

ci where πi ∈ [0,
1

2
].

Let f(t) = d1(µ1 t)
µ1

+
∑
ci
n

. Then we have dµ(π) =
∑n

i=1 µi f(πi
µi

).

A.5 Proof of Proposition 4

Consider a Hypothesis Testing representation (µ, ρ, ε) defined on the finite state space

S.

Proof. We first establish some notation. Let πρA = arg maxπ∈∆(S) ρ(π)π(A) for any ρ ∈

∆(∆(S)) such that ρ(π) 6= ρ(π′) for any distinct π, π′ ∈ ∆(S). We denote the support of

π by sp(π). Without loss of generality, suppose that sp(π) = S for any π ∈ sp(ρ) \ {µ}.

For any B ⊆ S, let

f(B) = −
∑
s∈B

µ(s) log(
µ(s)

µ(B)
) when µ(B) > 0

and

g(B) = −
∑
s∈B

πρB(s) log(
πρB(s)

πρB(B)
).

Note that 0 ≤ f(B), g(B) < +∞. Let

M = max
B,B′⊆S

{|f(B)− f(B′)|, |f(B)− g(B′)|, |g(B)− g(B′)|}+ 1.
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Now, consider the following distance:

dµ(π) =


−
∑

s∈sp(π) µ(s) log(π(s))−M |{sp(π) ∩ sp(µ)}| if µ(sp(π)) > ε,

−
∑

s∈sp(π) π
ρ
sp(π)(s) log(π(s)) +M(|S|+ 1− |sp(π)|) if µ(sp(π)) ≤ ε.

Then for any A ⊆ S and s ∈ A,

µI1A(s) =


µ(s)
µ(A)

when µ(A) > ε,

πρA(s)

πρA(A)
when µ(A) ≤ ε.

To demonstrate this, we consider any A ⊆ S and derive µI1A . There are two cases.

Case 1. Suppose µ(A) ≤ ε.

For any π ∈ I1
A, since π(A) = 1, we have sp(π) ⊆ A. Therefore, µ(sp(π)) ≤ µ(A) ≤ ε.

Hence, we have

dµ(π) = −
∑

s∈sp(π)

πρsp(π)(s) log(π(s)) +M(|S|+ 1− |sp(π)|) for any π ∈ I1
A.

Take any B ⊆ A. For any π ∈ I1
A with sp(π) = B,

dµ(π) = −
∑
s∈B

πρB(s) log(π(s)) +M(|S|+ 1− |B|).

Since M(|S|+1−|B|) is fixed for given B, the above distance function leads to Bayesian

posterior µB such that µB(s) =
πρ
sp(π)

(s)

πρ
sp(π)

(B)
for any s ∈ B. Hence, dµ(µB) = g(B)+M(|S|+

1 − |B|). Note that if B ⊂ A, then dµ(µB) > dµ(µA) since g(B) + M(|S| + 1 − |B|) >

g(A) +M(|S|+ 1− |A|), which is equivalent to M(|A| − |B|) ≥ g(A)− g(B) and by the

definition of M , we have M(|A| − |B|) ≥M > |g(A)− g(B)| ≥ g(A)− g(B). Therefore,

µA minimizes dµ(π) subject to π ∈ I1
A. Hence, µI1A(s) = µA(s) =

πρA(s)

πρA(A)
.
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Case 2. Suppose µ(A) > ε. Take any π ∈ I1
A.

Case 2.1. µ(sp(π)) ≤ ε.

By the argument for µ(A) ≤ ε, dµ(µA) ≤ dµ(π) for any π ∈ I1
A with µ(sp(π)) ≤ ε.

Moreover, dµ(µA) = g(A) + M(|S| + 1 − |A|) ≥ g(A) + M . Hence, g(A) + M ≤ dµ(π)

for any π ∈ I1
A with µ(sp(π)) ≤ ε. We now show that there is a π ∈ I1

A such that

dµ(π) < g(A) +M .

Let πA be a Bayesian posterior such that πA(s) = µ(s)
µ(A)

for any s ∈ A. Then

sp(πA) = sp(µ) ∩ A. Hence, µ(sp(πA)) = µ(sp(µ) ∩ A) = µ(A) > ε. Therefore,

dµ(πA) = −
∑

s∈sp(πA) µ(s) log( µ(s)
µ(A)

)−M |sp(πA) ∩ sp(µ)|. Moreover,

dµ(πA) = −
∑

s∈sp(πA)

µ(s) log(
µ(s)

µ(A)
)−M |sp(πA)∩ sp(µ)| ≤ −

∑
s∈A

µ(s) log(
µ(s)

µ(A)
) = f(A)

since sp(πA) ⊆ A and µ(s) log( µ(s)
µ(A)

) ≤ 0 for each s. Hence, dµ(πA) ≤ f(A) < g(A) +M

by the definition of M .

Case 2. µ(sp(π)) > ε.

In ther case, we have dµ(π) = −
∑

s∈sp(π) µ(s) log(π(s))−M |{sp(π)∩ sp(µ)}|. Take

any B ⊆ A∩sp(µ). Take any π ∈ I1
A such that sp(π) = B. Since |{sp(π)∩sp(µ)}| = |B|,

dµ(π) = −
∑
s∈B

µ(s) log(π(s))−M |B|.

When B is fixed, the above leads to Bayesian posterior πB such that πB(s) = µ(s)
µ(B)

for

any s ∈ B. In other words, πB minimizes dµ(π) subject to sp(π) = B. Hence, we obtain

dµ(πB) = f(B)−M |B|.

By the definition of M , if B ⊂ A ∩ sp(µ), then

dµ(πB) = f(B)−M |B| > dµ(πA∩sp(µ)) = f(A ∩ sp(µ))−M |A ∩ sp(µ)|.

43



Hence, πA∩sp(µ) minimizes dµ(π) subject to µ ∈ I1
A. Finally, note that πA∩sp(µ) = πA

since µ(A ∩ sp(µ)) = µ(A) and πA(s) = µ(s)
µ(A)

= µ(s)
µ(A∩sp(µ))

= πA∩sp(µ)(s) for each s ∈ A.

Therefore,

µI1A(s) = πA(s) =
µ(s)

µ(A)
.

A.6 Proof of Proposition 5

Proof. Take any i ≥ 2 and α ∈ [0, 1]. Note that πi = gi(α) solves the following opti-

mization problem:

min
π∈[0,α]

fi(πi) + f1(α− πi).

The first order condition gives f ′i(gi(α)) = f ′1(α−gi(α)). Let t = gi(α) ∈ [0, gi(1)]. Then

α = g−1
i (t). Then we have f ′i(t) = f ′1(g−1

i (t)−t). Hence, fi(πi) =
∫ πi

0
f ′1(g−1

i (t)−t)+fi(0).

Finally,

dµ(π) = f1(π1) +
n∑
t=2

∫ πi

0

f ′1(g−1
i (t)− t)dt+

n∑
i=2

fi(0) for any π ∈ [0, 1]×
n∏
i=2

[0, gi(1)].

Let f(π) = f1(π) +
∑n

i=2 fi(0). Then we have the desired result.

B Preference Differences Lead to Distance Func-

tions

Under minimum distance updating, the DM selects a posterior belief that is “as close

as possible” to her prior belief. Another interpretation of minimum distance updating
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is that the DM is choosing a posterior belief that requires a minimal change in behav-

ior, which is captured by the changes in her preference over acts.18 Taking this view,

any function that measures the difference between two preferences will lead to its own

distance function dµ. We consider the following two cases.

Ordinal Preferences: In many contexts, preferences only have ordinal meaning. Hence,

a natural way to measure the difference between two preference relations is to simply

count the number of times the preferences rank objects differently. For example, con-

sider d(%I ,%) = #{f, g ∈ F |f % g and g �I f}. This function calculates the number

of pairs (f, g) such that f is preferred to g according to the ex-ante preference relation,

but g is preferred to f according to the ex-post preference relation under I.

Example 1. Suppose F̂ = {pEw|E ⊆ S and p ∈ ∆(X)}, where w is the worst outcome

in X. Then we obtain dµ(π) =
∑

E,E′⊆S d(E,E ′) where

d(E,E ′) =


1

2f(E,E′)
if f(E,E ′) = min{ π(E)

π(E′)
, µ(E)
µ(E′)
} ≥ 1

1− f(E,E′)
2

if f(E,E ′) < 1.

Cardinal Preference: In SEU, preferences have some cardinal meaning. Hence, we

can calculate the difference between SEU preferences based on utility differences. For ex-

ample, consider d(%I ,%) =
∫
F ρ(Euµ(f),Euπ(f))df where ρ is a function that measures

the difference between expected utilities.

Example 2. Let F ∗ = {p{s}w|s ∈ S and p ∈ ∆(X)} and suppose ρ is homogenous of

degree k. Then we will obtain a distance function dµ(π) =
∑n

i=1(µi)
k f( π

µi
). 19

This distance function simultaneously generalizes Bayesian distance functions and

Euclidean distance functions. In particular, when k = 1, we obtain a Bayesian distance

18Indeed, if we consider the initial preference a representation of behavior, then the idea of “behavioral
inertia” suggests that a DM will only make minimal changes.

19Since ρ(a, b) = (a)k ρ(1, ba ), we obtain dµ(π) =
∑n
i=1(µi)

k f( πµi
) where f( ba ) = c ρ(1, ba ) and c =∫

X
(u(x))ρdx.
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function dµ(π) =
∑n

i=1 µi f( π
µi

). When k = 2 and f(t) = (1−t)2, we obtain the Euclidean

distance function dµ(π) =
∑n

i=1(µi − πi)2.
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